Do you want to publish a course? Click here

Shape-Preserving Accelerating Electromagnetic Wavepackets in Curved Space

214   0   0.0 ( 0 )
 Added by Rivka Bekenstein
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present shape-preserving spatially accelerating electromagnetic wavepackets in curved space: wavepackets propagating along non-geodesic trajectories while recovering their structure periodically. These wavepackets are solutions to the paraxial and non-paraxial wave equation in curved space. We analyze the dynamics of such beams propagating on surfaces of revolution, and find solutions that carry finite power. These solutions propagate along a variety of non-geodesic trajectories, reflecting the interplay between the curvature of space and interference effects, with their intensity profile becoming narrower (or broader) in a scaled self-similar fashion Finally, we extend this concept to nonlinear accelerating beams in curved space supported by the Kerr nonlinearity. Our study concentrates on optical settings, but the underlying concepts directly relate to General Relativity.



rate research

Read More

We present the first experimental observation of accelerating beams in curved space. More specifically, we demonstrate, experimentally and theoretically, shape-preserving accelerating beams propagating on spherical surfaces: closed-form solutions of the wave equation manifesting nongeodesic self-similar evolution. Unlike accelerating beams in flat space, these wave packets change their acceleration trajectory due to the interplay between interference effects and the space curvature, and they focus and defocus periodically due to the spatial curvature of the medium in which they propagate.
Although diffractive spreading is an unavoidable feature of all wave phenomena, certain waveforms can attain propagation-invariance. A lesser-explored strategy for achieving optical selfsimilar propagation exploits the modification of the spatio-temporal field structure when observed in reference frames moving at relativistic speeds. For such an observer, it is predicted that the associated Lorentz boost can bring to a halt the axial dynamics of a wave packet of arbitrary profile. This phenomenon is particularly striking in the case of a self-accelerating beam -- such as an Airy beam -- whose peak normally undergoes a transverse displacement upon free-propagation. Here we synthesize an acceleration-free Airy wave packet that travels in a straight line by deforming its spatio-temporal spectrum to reproduce the impact of a Lorentz boost. The roles of the axial spatial coordinate and time are swapped, leading to `time-diffraction manifested in self-acceleration observed in the propagating Airy wave-packet frame.
All known realizations of optical wave packets that accelerate along their propagation axis, such as Airy wave packets in dispersive media or wave-front-modulated X-waves, exhibit a constant acceleration; that is, the group velocity varies linearly with propagation. Here we synthesize space-time wave packets that travel in free space with arbitrary axial acceleration profiles, including group velocities that change with integer or fractional exponents of the distance. Furthermore, we realize a composite acceleration profile: the wave packet first accelerates from an initial to a terminal group velocity, decelerates back to the initial value, and then travels at a fixed group velocity. These never-before-seen optical-acceleration phenomena are all produced using the same experimental arrangement that precisely sculpts the wave packets spatio-temporal spectral structure.
We report a realization of three-dimensional (3D) electromagnetic void space. Despite occupying a finite volume of space, such a medium is optically equivalent to an infinitesimal point where electromagnetic waves experience no phase accumulation. The 3D void space is realized by constructing all-dielectric 3D photonic crystals such that the effective permittivity and permeability vanish simultaneously, forming a six-fold Dirac-like point with Dirac-like linear dispersions at the center of the Brillouin Zone. We demonstrate, both theoretically and experimentally, that such a 3D void space exhibits unique properties and rich functionalities absent in any other electromagnetic media, such as boundary-control transmission switching and 3D perfect wave-steering mechanisms. Especially, contrary to the photonic doping effect in its two-dimensional counterpart, the 3D void space exhibits an amazing property of impurity-immunity. Our work paves a road towards the realization of 3D void space where electromagnetic waves can be manipulated in unprecedented ways.
Topological structures of electromagnetic fields could give access to nontrivial light-matter interactions and additional degrees of freedom for information and energy transfer. A characteristic example of such electromagnetic excitations are space-time non-separable single-cycle pulses, the exact solutions of Maxwell equation of toroidal topology predicted by Hellwarth and Nouchi in 1996 and recently observed experimentally. Here we introduce a new family of electromagnetic excitation of toroidal topology with increasing complexity in which the Hellwarth-Nouchi pulse is just the simplest member. The electromagnetic excitations of the new family can be parametrised by a single real number and exhibit skyrmionic structures of various orders. They feature multiple singularities in the electromagnetic and Poynting vector fields are accompanied by the fractal-like distributions of energy backflow. The generalized family of toroidal electromagnetic excitation with salient topologies are of interest for transient light-matter interactions, ultrafast optics, spectroscopy, and toroidal electrodynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا