Shape dynamics is a classical theory of gravity which agrees with general relativity in many important aspects, but which possesses different gauge symmetries and can present some fundamental global differences with respect to Einstein spacetimes. Here, we present a general procedure for (locally) mapping stationary, axisymmetric general relativity solutions onto their shape dynamic counterparts. We focus in particular on the rotating black hole solution for shape dynamics and show that many of the properties of the spherically symmetric solution are preserved in the extension to the axisymmetric case: it is also free of physical singularities, it does not form a space-time at the horizon, and it possesses an inversion symmetry about the horizon which leads to us to interpret the solution as a wormhole.