No Arabic abstract
Out of several dozen z > 7 candidate galaxies observed spectroscopically, only five have been confirmed via Lyman-alpha emission, at z=7.008, 7.045, 7.109, 7.213 and 7.215. The small fraction of confirmed galaxies may indicate that the neutral fraction in the intergalactic medium (IGM) rises quickly at z > 6.5, as Lyman-alpha is resonantly scattered by neutral gas. However, the small samples and limited depth of previous observations makes these conclusions tentative. Here we report the results of a deep near-infrared spectroscopic survey of 43 z > 6.5 galaxies. We detect only a single galaxy, confirming that some process is making Lyman-alpha difficult to detect. The detected emission line at 1.0343 um is likely to be Lyman-alpha emission, placing this galaxy at a redshift z = 7.51, an epoch 700 million years after the Big Bang. This galaxys colors are consistent with significant metal content, implying that galaxies become enriched rapidly. We measure a surprisingly high star formation rate of 330 Msol/yr, more than a factor of 100 greater than seen in the Milky Way. Such a galaxy is unexpected in a survey of our size, suggesting that the early universe may harbor more intense sites of star-formation than expected.
We present rest-frame far-infrared (FIR) and optical observations of the host galaxy of GRB090423 at z=8.23 from the Atacama Large Millimeter Array (ALMA) and the Spitzer Space Telescope, respectively. The host remains undetected to 3-sigma limits of Fnu(222 GHz)<33 microJy and Fnu(3.6 micron)<81 nJy. The FIR limit is about 20 times fainter than the luminosity of the local ULIRG Arp220, and comparable to the local starburst M82. Comparing to model spectral energy distributions we place a limit on the IR luminosity of L_IR(8-1000 micron)<3e10 Lsun, corresponding to a limit on the obscured star formation rate of SFR_IR<5 Msun/yr; for comparison, the limit on the unobscured star formation rate from Hubble Space Telescope rest-frame UV observations is SFR_UV<1 Msun/yr. We also place a limit on the host galaxy stellar mass of <5e7 Msun (for a stellar population age of 100 Myr and constant star formation rate). Finally, we compare our millimeter observations to those of field galaxies at z>4 (Lyman break galaxies, Ly-alpha emitters, and submillimeter galaxies), and find that our limit on the FIR luminosity is the most constraining to date, although the field galaxies have much larger rest-frame UV/optical luminosities than the host of GRB090423 by virtue of their selection techniques. We conclude that GRB host galaxies at z>4, especially those with measured interstellar medium metallicities from afterglow spectroscopy, are an attractive sample for future ALMA studies of high redshift obscured star formation.
How and when did galaxies form and assemble their stars and stellar mass? The answer to these questions, so crucial to astrophysics and cosmology, requires the full reconstruction of the so called cosmic star formation rate density (SFRD), i.e. the evolution of the average star formation rate per unit volume of the universe. While the SFRD has been reliably traced back to 10-11 billion years ago, its evolution is still poorly constrained at earlier cosmic epochs, and its estimate is mainly based on galaxies luminous in the ultraviolet and with low obscuration by dust. This limited knowledge is largely due to the lack of an unbiased census of all types of star-forming galaxies in the early universe. We present a new approach to find dust-obscured star-forming galaxies based on their emission at radio wavelengths coupled with the lack of optical counterparts. Here, we present a sample of 197 galaxies selected with this method. These systems were missed by previous surveys at optical and near-infrared wavelengths, and 22 of them are at very high redshift (i.e. z > 4.5). The contribution of these elusive systems to the SFRD is substantial and can be as high as 40% of the previously known SFRD based on UV-luminous galaxies. The mere existence of such heavily obscured galaxies in the first two billion years after the Big Bang opens new avenues to investigate the early phases of galaxy formation and evolution, and to understand the links between these systems and the massive galaxies which ceased their star formation at later cosmic times.
Massive disk galaxies like the Milky Way are expected to form at late times in traditional models of galaxy formation, but recent numerical simulations suggest that such galaxies could form as early as a billion years after the Big Bang through the accretion of cold material and mergers. Observationally, it has been difficult to identify disk galaxies in emission at high redshift, in order to discern between competing models of galaxy formation. Here we report imaging, with a resolution of about 1.3 kiloparsecs, of the 158-micrometre emission line from singly ionized carbon, the far-infrared dust continuum and the near-ultraviolet continuum emission from a galaxy at a redshift of 4.2603, identified by detecting its absorption of quasar light. These observations show that the emission arises from gas inside a cold, dusty, rotating disk with a rotational velocity of 272 kilometres per second. The detection of emission from carbon monoxide in the galaxy yields a molecular mass that is consistent with the estimate from the ionized carbon emission of about 72 billion solar masses. The existence of such a massive, rotationally supported, cold disk galaxy when the Universe was only 1.5 billion years old favours formation through either cold-mode accretion or mergers, although its large rotational velocity and large content of cold gas remain challenging to reproduce with most numerical simulations.
We report the detection of CO molecular line emission in the z=4.5 millimeter-detected galaxy COSMOS_J100054+023436 (hereafter: J100+0234) using the IRAM Plateau de Bure interferometer (PdBI) and NRAOs Very Large Array (VLA). The CO(4-3) line as observed with PdBI has a full line width of ~1000 km/s, an integrated line flux of 0.66 Jy km/s, and a CO luminosity of 3.2e10 L_sun. Comparison to the 3.3sigma detection of the CO(2-1) line emission with the VLA suggests that the molecular gas is likely thermalized to the J=4-3 transition level. The corresponding molecular gas mass is 2.6e10 M_sun assuming an ULIRG-like conversion factor. From the spatial offset of the red- and blue-shifted line peaks and the line width a dynamical mass of 1.1e11 M_sun is estimated assuming a merging scenario. The molecular gas distribution coincides with the rest-frame optical and radio position of the object while being offset by 0.5 from the previously detected Ly$alpha$ emission. J1000+0234 exhibits very typical properties for lower redshift (z~2) sub-millimeter galaxies (SMGs) and thus is very likely one of the long sought after high redshift (z>4) objects of this population. The large CO(4-3) line width taken together with its highly disturbed rest-frame UV geometry suggest an ongoing major merger about a billion years after the Big Bang. Given its large star formation rate (SFR) of >1000 M_sun/yr and molecular gas content this object could be the precursor of a red-and-dead elliptical observed at a redshift of z=2.
Cosmological models predict that galaxies forming in the early Universe experience a chaotic phase of gas accretion and star formation, followed by gas ejection due to feedback processes. Galaxy bulges may assemble later via mergers or internal evolution. Here we present submillimeter observations (with spatial resolution of 700 parsecs) of ALESS 073.1, a starburst galaxy at redshift z~5, when the Universe was 1.2 billion years old. This galaxys cold gas forms a regularly rotating disk with negligible noncircular motions. The galaxy rotation curve requires the presence of a central bulge in addition to a star-forming disk. We conclude that massive bulges and regularly rotating disks can form more rapidly in the early Universe than predicted by models of galaxy formation.