Do you want to publish a course? Click here

Ruprecht 106: the first single population Globular Cluster?

175   0   0.0 ( 0 )
 Added by Sandro Villanova
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

All old Galactic Globular Clusters studied in detail to date host at least two generations of stars, where the second is formed from gas polluted by processed material produced by massive stars of the first. This process can happen if the initial mass of the cluster exceeds a threshold above which ejecta are retained and a second generation is formed. A determination of this mass-threshold is mandatory in order to understand how GCs form. We analyzed 9 RGB stars belonging to the cluster Ruprecht 106. Targets were observed with the UVES@VLT2 spectrograph. Spectra cover a wide range and allowed us to measure abundances for light (O,Na,Mg,Al), alpha (Si,Ca,Ti), iron-peak (Sc,V,Cr,Mn,Fe,Co,Ni,Cu,Zn) and neutron-capture (Y,Zr,Ba,La,Ce,Pr,Nd,Sm,Eu,Dy,Pb) elements. Based on these abundances we show that Ruprecht 106 is the first convincing example of a single population GC (i.e. a true simple stellar population), although the sample is relatively small. This result is supported also by an independent photometric test and by the HB morphology and the dynamical state. It is old (~12 Gyrs) and, at odds with other GCs, has no alpha-enhancement. The material it formed from was contaminated by both s- and r- process elements. The abundance pattern points toward an extragalactic origin. Its present day mass (M=10^4.83 Msun) can be assumed as a strong lower limit for the initial mass threshold below which no second generation is formed. Clearly, its initial mass must have been significantly greater but we have no current constraints on the amount of mass loss during its evolution.



rate research

Read More

More than a decade has passed since the definition of Globular Cluster (GC) changed, and now we know that they host Multiple Populations (MPs). But few GCs do not share that behaviour and Ruprecht 106 is one of these clusters. We analyzed thirteen member red giant branch stars using spectra in the wavelength range 6120-6405 Angstroms obtained through the GIRAFFE Spectrograph, mounted at UT2 telescope at Paranal, as well as the whole cluster using C, V, R and I photometry obtained through the Swope telescope at Las Campanas. Atmospheric parameters were determined from the photometry to determine Fe and Na abundances. A photometric analysis searching for MPs was also carried out. Both analyses confirm that Ruprecht 106 is indeed one on the few GCs to host Simple Stellar Population, in agreement with previous studies. Finally, a dynamical study concerning its orbits was carried out to analyze the possible extra galactic origin of the Cluster. The orbital integration indicates that this GC belongs to the inner halo, while an Energy plane shows that it cannot be accurately associated with any known extragalactic progenitor.
Based upon the kinematics of ten globular clusters, it has recently been claimed that the ultra-diffuse galaxy, NCD 1052-DF2, lacks a significant quantity of dark matter. Dynamical analyses have generally assumed that this galaxy is pressure supported, with the relatively small velocity dispersion of the globular cluster population indicating the deficit of dark matter. However, the presence of a significant rotation of the globular cluster population could substantially modify this conclusion. Here we present the discovery of such a signature of rotation in the kinematics of NGC 1052-DF2s globular clusters, with a velocity amplitude of $sim12.44^{+4.40}_{-5.16}$ km/s, which, through Bayesian model comparison, represents a marginally better fit to the available kinematic data; note that this rotation is distinct from, and approximately perpendicular to, the recently identified rotation of the stellar component of NGC 1052-DF2. Assuming this truly represents an underlying rotation, it is shown that the determined mass depends upon the inclination of the rotational component and, with a moderate inclination, the resultant mass to light ratio can exceed $M/Lsim10$.
241 - Fu-Chi Yeh 2019
We employed recent Gaia/DR2 data to investigate the dynamical status of the nearby (300 pc), old (2.5 Gyr) open cluster Ruprecht~147. We found prominent leading and trailing tails of stars along the cluster orbit, which demonstrates that Ruprecht~147 is losing stars at fast pace. Star counts indicate the cluster has a core radius of 33.3 arcmin, and a tidal radius of 137.5 arcmin. The cluster also possesses an extended corona, which cannot be reproduced by a simple King model. We computed the present-day cluster mass using its luminosity and mass function, and derived an estimate of 234$pm$52 $M_{odot}$. We also estimated the cluster original mass using available recipes extracted from N-body simulations obtaining a mass at birth of 50000$pm$6500 $M_{odot}$. Therefore dynamical mass loss, mostly caused by tidal interaction with the Milky Way, reduced the cluster mass by about 99%. We then conclude that Ruprecht~147 is rapidly dissolving into the general Galactic disc.
140 - Sang Chul KIM 2017
We present a BVI optical photometric study of the old open cluster Ruprecht 6 using the data obtained with the SMARTS 1.0 m telescope at the CTIO, Chile. Its color-magnitude diagrams show the clear existence of the main-sequence stars, of which turn-off point is located around V ~ 18.45 mag and B-V ~ 0.85 mag. Three red clump (RC) stars are identified at V = 16.00 mag, I = 14.41 mag and B-V = 1.35 mag. From the mean Ks-band magnitude of RC stars (Ks=12.39 +- 0.21 mag) in Ruprecht 6 from 2MASS photometry and the known absolute magnitudes of the RC stars (M_Ks = -1.595 +- 0.025 mag), we obtain the distance modulus to Ruprecht 6 (m-M)_0 = 13.84 +- 0.21 mag (d=5.86 +- 0.60 kpc). From the (J-K_s) and (B-V) colors of the RC stars, comparison of the (B-V) and (V-I) colors of the bright stars in Ruprecht 6 with those of the intrinsic colors of dwarf and giant stars, and the PARSEC isochrone fittings, we derive the reddening values of E(B-V) = 0.42 mag and E(V-I) = 0.60 mag. Using the PARSEC isochrone fittings onto the color-magnitude diagrams, we estimate the age and metallicity to be: log (t) =9.50 +- 0.10 (t =3.16 +- 0.82 Gyr) and [Fe/H] = -0.42 +- 0.04 dex. We present the Galactocentric radial metallicity gradient analysis for old (age > 1 Gyr) open clusters of Dias et al. catalog, which likely follow a single relation of [Fe/H] =(-0.034 +- 0.007) R_GC + (0.190 +- 0.080) (rms = 0.201) for the whole radial range or dual relation of [Fe/H] =(-0.077 +- 0.017) R_GC + (0.609 +- 0.161) (rms = 0.152) and constant ([Fe/H] ~ -0.3 dex) value, inside and outside of R_GC ~ 12 kpc, respectively. The metallicity and Galactocentric radius (13.28 +- 0.54 kpc) of Ruprecht 6 obtained in this study seem to be consistent with both of the relations.
We describe the goals and first results of a Program for Imaging of the PERseus cluster of galaxies (PIPER). The first phase of the program builds on imaging of fields obtained with the Hubble Space Telescope (HST) ACS/WFC and WFC3/UVIS cameras. Our PIPER target fields with HST include major early-type galaxies including the active central giant NGC 1275; known Ultra-Diffuse Galaxies; and the Intracluster Medium. The resulting two-color photometry in F475W and F814W reaches deep enough to resolve and measure the globular cluster (GC) populations in the Perseus member galaxies. Here we present initial results for eight pairs of outer fields that confirm the presence of Intergalactic GCs (IGCs) in fields as distant as 740 kpc from the Perseus center (40% of the virial radius of the cluster). Roughly 90% of these IGCs are identifiably blue (metal-poor) but there is a clear trace of a red (metal-rich) component as well, even at these very remote distances.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا