Do you want to publish a course? Click here

Twisted $Gamma$-Lie algebras and their vertex operator representations

156   0   0.0 ( 0 )
 Added by Qing Wang
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

Let $Gamma$ be a generic subgroup of the multiplicative group $mathbb{C}^*$ of nonzero complex numbers. We define a class of Lie algebras associated to $Gamma$, called twisted $Gamma$-Lie algebras, which is a natural generalization of the twisted affine Lie algebras. Starting from an arbitrary even sublattice $Q$ of $mathbb Z^N$ and an arbitrary finite order isometry of $mathbb Z^N$ preserving $Q$, we construct a family of twisted $Gamma$-vertex operators acting on generalized Fock spaces which afford irreducible representations for certain twisted $Gamma$-Lie algebras. As application, this recovers a number of known vertex operator realizations for infinite dimensional Lie algebras, such as twisted affine Lie algebras, extended affine Lie algebras of type $A$, trigonometric Lie algebras of series $A$ and $B$, unitary Lie algebras, and $BC$-graded Lie algebras.



rate research

Read More

The polynomial ring $B_r:=mathbb{Q}[e_1,ldots,e_r]$ in $r$ indeterminates is a representation of the Lie algebra of all the endomorphism of $mathbb{Q}[X]$ vanishing at powers $X^j$ for all but finitely many $j$. We determine a $B_r$-valued formal power series in $r+2$ indeterminates which encode the images of all the basis elements of $B_r$ under the action of the generating function of elementary endomorphisms of $mathbb{Q}[X]$, which we call the structural series of the representation. The obtained expression implies (and improves) a formula by Gatto & Salehyan, which only computes, for one chosen basis element, the generating function of its images. For sake of completeness we construct in the last section the $B=B_infty$-valued structural formal power series which consists in the evaluation of the vertex operator describing the bosonic representation of $gl_{infty}(mathbb{Q})$ against the generating function of the standard Schur basis of $B$. This provide an alternative description of the bosonic representation of $gl_{infty}$ due to Date, Jimbo, Kashiwara and Miwa which does not involve explicitly exponential of differential operators.
A representation of the central extension of the unitary Lie algebra coordinated with a skew Laurent polynomial ring is constructed using vertex operators over an integral Z_2-lattice. The irreducible decomposition of the representation is explicitly computed and described. As a by-product, some fundamental representations of affine Kac-Moody Lie algebra of type $A_n^{(2)}$ are recovered by the new method.
The essential feature of a root-graded Lie algebra L is the existence of a split semisimple subalgebra g with respect to which L is an integrable module with weights in a possibly non-reduced root system S of the same rank as the root system R of g. Examples include map algebras (maps from an affine scheme to g, S = R), matrix algebras like sl_n(A) for a unital associative algebra A (S = R = A_{n-1}), finite-dimensional isotropic central-simple Lie algebras (S properly contains R in general), and some equivariant map algebras. In this paper we study the category of representations of a root-graded Lie algebra L which are integrable as representations of g and whose weights are bounded by some dominant weight of g. We link this category to the module category of an associative algebra, whose structure we determine for map algebras and sl_n(A). Our results unify previous work of Chari and her collaborators on map algebras and of Seligman on isotropic Lie algebras.
In the article at hand, we sketch how, by utilizing nilpotency to its fullest extent (Engel, Super Engel) while using methods from the theory of universal enveloping algebras, a complete description of the indecomposable representations may be reached. In practice, the combinatorics is still formidable, though. It turns out that the method applies to both a class of ordinary Lie algebras and to a similar class of Lie superalgebras. Besides some examples, due to the level of complexity we will only describe a few precise results. One of these is a complete classification of which ideals can occur in the enveloping algebra of the translation subgroup of the Poincare group. Equivalently, this determines all indecomposable representations with a single, 1-dimensional source. Another result is the construction of an infinite-dimensional family of inequivalent representations already in dimension 12. This is much lower than the 24-dimensional representations which were thought to be the lowest possible. The complexity increases considerably, though yet in a manageable fashion, in the supersymmetric setting. Besides a few examples, only a subclass of ideals of the enveloping algebra of the super Poincare algebra will be determined in the present article.
We investigate the fundamental properties of quantum Borcherds-Bozec algebras and their representations. Among others, we prove that the quantum Borcherds-Bozec algebras have a triangular decomposition and the category of integrable representations is semi-simple.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا