We estimate the fraction of AGNs hosted in starburst galaxies (f_bursty) as a function of the AGN luminosity predicted under the assumption that starburst events and AGN activity are triggered by galaxy interactions during their merging histories. The latter are described through Monte Carlo realizations, and are connected to star formation and BH accretion using a semi-analytic model of galaxy formation in a cosmological framework. The predicted fraction f_bursty increases steeply with AGN luminosity from <0.2 at L_X < 10^44 erg/s to >0.9 at L_X > 10^45 erg/s over a wide redshift interval from z=0 to z=6. We compare the model predictions with new measurements of f_bursty from a sample of X-ray selected AGNs in the XMM-COSMOS field at 0.3< z< 2, and from a sample of QSOs (L_X > 10^45 erg/s) in the redshift range 2< z< 6.5. We find preliminary indications that under conservative assumptions half of the QSO hosts are starburst galaxies. This result provide motivation for future systematic studies of the stellar properties of high luminosity AGN hosts in order to constrain AGN triggering mechanisms.