High-pT hadrons from nuclear collisions: Unifying pQCD with hydrodynamics


Abstract in English

Hadrons inclusively produced with large pT in high-energy collisions originate from the jets, whose initial virtuality and energy are of the same order, what leads to an extremely intensive gluon radiation and dissipation of energy at the early stage of hadronization. Besides, these jets have a peculiar structure: the main fraction of the jet energy is carried by a single leading hadron, so such jets are very rare. The constraints imposed by energy conservation enforce an early color neutralization and a cease of gluon radiation. The produced colorless dipole does not dissipate energy anymore and is evolving to form the hadron wave function. The small and medium pT region is dominated by the hydrodynamic mechanisms of hadron production from the created hot medium. The abrupt transition between the hydrodynamic and perturbative QCD mechanisms causes distinct minima in the pT dependence of the suppression factor R_{AA} and of the azimuthal asymmetry v2. Combination of these mechanisms allows to describe the data through the full range of pT at different collision energies and centralities.

Download