Do you want to publish a course? Click here

Constraining stellar population models - I. Age, metallicity, and abundance pattern compilation for Galactic globular clusters

105   0   0.0 ( 0 )
 Added by Joel Roediger
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an extenstive literature compilation of age, metallicity, and chemical abundance pattern information for the 41 Galactic globular clusters (GGCs) studied by Schiavon et al. (2005). Our compilation constitutes a notable improvement over previous similar work, particularly in terms of chemical abundances. Its primary purpose is to enable detailed evaluations of and refinements to stellar population synthesis models designed to recover the above information for unresolved stellar systems based on their integrated spectra. However, since the Schiavon sample spans a wide range of the known GGC parameter space, our compilation may also benefit investigations related to a variety of astrophysical endeavours, such as the early formation of the Milky Way, the chemical evolution of GGCs, and stellar evolution and nucleosynthesis. For instance, we confirm with our compiled data that the GGC system has a bimodal metallicity distribution and is uniformly enhanced in the alpha-elements. When paired with the ages of our clusters, we find evidence that supports a scenario whereby the Milky Way obtained its globular clusters through two channels, in situ formation and accretion of satellite galaxies. The distributions of C, N, O, and Na abundances and the dispersions thereof per cluster corroborate the known fact that all GGCs studied so far with respect to multiple stellar populations have been found to harbour them. Finally, using data on individual stars, we also confirm that the atmospheres of stars become progressively polluted by CN(O)-processed material after they leave the main sequence and uncover evidence which suggests the alpha-elements Mg and Ca may originate from more than one nucleosynthetic production site. [abridged]



rate research

Read More

We built modelled spectra of stellar population at high resolution and with variable alpha-elements enhancements. Analysing spectra of Galactic globular clusters we show that it is possible to derive reliably and efficiently [Mg/Fe] using spectra integrated along the line-of-sight. These detailed measurements open perspectives for investigating the enrichment process on galaxies and star clusters.
We derive stellar population parameters for a representative sample of ultracompact dwarfs (UCDs) and a large sample of massive globular clusters (GCs) with stellar masses $gtrsim$ 10$^{6}$ $M_{odot}$ in the central galaxy M87 of the Virgo galaxy cluster, based on model fitting to the Lick-index measurements from both the literature and new observations. After necessary spectral stacking of the relatively faint objects in our initial sample of 40 UCDs and 118 GCs, we obtain 30 sets of Lick-index measurements for UCDs and 80 for GCs. The M87 UCDs have ages $gtrsim$ 8 Gyr and [$alpha$/Fe] $simeq$ 0.4 dex, in agreement with previous studies based on smaller samples. The literature UCDs, located in lower-density environments than M87, extend to younger ages and smaller [$alpha$/Fe] (at given metallicities) than M87 UCDs, resembling the environmental dependence of the Virgo dE nuclei. The UCDs exhibit a positive mass-metallicity relation (MZR), which flattens and connects compact ellipticals at stellar masses $gtrsim$ 10$^{8}$ $M_{odot}$. The Virgo dE nuclei largely follow the average MZR of UCDs, whereas most of the M87 GCs are offset towards higher metallicities for given stellar masses. The difference between the mass-metallicity distributions of UCDs and GCs may be qualitatively understood as a result of their different physical sizes at birth in a self-enrichment scenario or of galactic nuclear cluster star formation efficiency being relatively low in a tidal stripping scenario for UCD formation. The existing observations provide the necessary but not sufficient evidence for tidally stripped dE nuclei being the dominant contributors to the M87 UCDs.
We present SOAR/OSIRIS cross-dispersed NIR integrated spectra of 12 Galactic globular clusters that are employed to test Maraston (2005, M05) NIR EPS models, and to provide spectral observational constraints to calibrate future models. We measured Ew of the most prominent NIR absorption features. Optical Ew were also measured. The globular clusters Ew were compared with model predictions with ages within 4-15 Gyr, and metallicities between 1/200 and 2 Zsun. Observed integrated colours were also compared with models. The NIR integrated spectra among our sample appear qualitatively similar in most the absorption features. The M05 models can properly predict the optical Ew observed in globular clusters. Regarding the NIR, they do underestimate the strength of Mg I 1.49mum, but they can reproduce the observed Ew of Fe I 1.58mum, Si I 1.59mum, and CO 2.29mum, in about half of our sample. The remaining objects require the inclusion of intermediate-age populations. Thus, we suggest that the presence of C- and O-rich stars in models is important to reproduce the observed strengths of metallic lines. Another possibility is the lack of alpha-enhancement in the models. In the case of the optical and NIR Fe I lines, standard models and those that include blue horizontal branch stars, produce similar results. A similar trend is observed for Na I 5895A, while in the case of the G-band, the models with blue horizontal branch do describe better the observations. For most of the sample the optical to NIR colours are well described by the M05 models. In general, M05 models can provide reliable information on the NIR stellar population of galaxies, but only when Ew and colours are taken together, in other words, Ew and continuum fluxes should be simultaneously fitted. However, the results should be taken with caution, since the models tend to predict results biased towards young ages.
We present GALEX data for 44 Galactic globular clusters obtained during 3 GALEX observing cycles between 2004 and 2008. This is the largest homogeneous data set on the UV photometric properties of Galactic globular clusters ever collected. The sample selection and photometric analysis are discussed, and color-magnitude diagrams are presented. The blue and intermediate-blue horizontal branch is the dominant feature of the UV color-magnitude diagrams of old Galactic globular clusters. Our sample is large enough to display the remarkable variety of horizontal branch shapes found in old stellar populations. Other stellar types that are obviously detected are blue stragglers and post core-He burning stars. The main features of UV color-magnitude diagrams of Galactic globular clusters are briefly discussed. We establish the locus of post-core He burning stars in the UV color-magnitude diagram and present a catalog of candidate AGB-manqu e, post early-AGB, and post-AGB stars within our cluster sample.
We briefly summarize the impact of the chemical peculiarities associated to the multiple population phenomenon in Galactic Globular Clusters, on the evolutionary properties and spectral energy distribution of second generation stars, in comparison with the primordial stellar component.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا