New foundations and unification of basic plasma physics by means of classical mechanics


Abstract in English

The derivation of Debye shielding and Landau damping from the $N$-body description of plasmas requires many pages of heavy kinetic calculations in classical textbooks and is done in distinct, unrelated chapters. Using Newtons second law for the $N$-body system, we perform this derivation in a few steps with elementary calculations using standard tools of calculus, and no probabilistic setting. Unexpectedly, Debye shielding is encountered on the way to Landau damping. The theory is extended to accommodate a correct description of trapping or chaos due to Langmuir waves, and to avoid the small amplitude assumption for the electrostatic potential. Using the shielded potential, collisional transport is computed for the first time by a convergent expression including the correct calculation of deflections for all impact parameters. Shielding and collisional transport are found to be two related aspects of the repulsive deflections of electrons.

Download