Do you want to publish a course? Click here

Virtual Location-Based Services: Merging the Physical and Virtual World

209   0   0.0 ( 0 )
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

Location-based services gained much popularity through providing users with helpful information with respect to their current location. The search and recommendation of nearby locations or places, and the navigation to a specific location are some of the most prominent location-based services. As a recent trend, virtual location-based services consider webpages or sites associated with a location as virtual locations that online users can visit in spite of not being physically present at the location. The presence of links between virtual locations and the corresponding physical locations (e.g., geo-location information of a restaurant linked to its website), allows for novel types of services and applications which constitute virtual location-based services (VLBS). The quality and potential benefits of such services largely depends on the existence of websites referring to physical locations. In this paper, we investigate the usefulness of linking virtual and physical locations. For this, we analyze the presence and distribution of virtual locations, i.e., websites referring to places, for two Irish cities. Using simulated tracks based on a user movement model, we investigate how mobile users move through the Web as virtual space. Our results show that virtual locations are omnipresent in urban areas, and that the situation that a user is close to even several such locations at any time is rather the normal case instead of the exception.



rate research

Read More

Despite the services of sophisticated search engines like Google, there are a number of interesting information sources which are useful but largely inaccessible to current Web users. These information sources are often ad-hoc, location-specific and only useful for users over short periods of time, or relate to tacit knowledge of users or implicit knowledge in crowds. The solution presented in this paper addresses these problems by introducing an integrated concept of location and presence across the physical and virtual worlds enabling ad-hoc socializing of users interested in, or looking for similar information. While the definition of presence in the physical world is straightforward - through a spatial location and vicinity at a certain point in time - their definitions in the virtual world are neither obvious nor trivial. Based on a detailed analysis we provide an integrated spatial model spanning both worlds which enables us to define presence of users in a unified way. This integrated model allows us to enable ad-hoc socializing of users browsing the Web with users in the physical world specific to their joint information needs and allows us to unlock the untapped information sources mentioned above. We describe a proof-of-concept implementation of our model and provide an empirical analysis based on real-world experiments.
We present an overview of a series of results obtained from the analysis of human behavior in a virtual environment. We focus on the massive multiplayer online game (MMOG) Pardus which has a worldwide participant base of more than 400,000 registered players. We provide evidence for striking statistical similarities between social structures and human-action dynamics in the real and virtual worlds. In this sense MMOGs provide an extraordinary way for accurate and falsifiable studies of social phenomena. We further discuss possibilities to apply methods and concepts developed in the course of these studies to analyse oral and written narratives.
In this paper, we propose a new construction of constantdegree expanders motivated by their application in P2P overlay networks and in particular in the design of robust trees overlay. Our key result can be stated as follows. Consider a complete binary tree T and construct a random pairing {Pi} between leaf nodes and internal nodes. We prove that the graph GPi obtained from T by contracting all pairs (leaf-internal nodes) achieves a constant node expansion with high probability. The use of our result in improving the robustness of tree overlays is straightforward. That is, if each physical node participating to the overlay manages a random pair that couples one virtual internal node and one virtual leaf node then the physical-node layer exhibits a constant expansion with high probability. We encompass the difficulty of obtaining this random tree virtualization by proposing a local, selforganizing and churn resilient uniformly-random pairing algorithm with O(log2 n) running time. Our algorithm has the merit to not modify the original tree virtual overlay (we just control the mapping between physical nodes and virtual nodes). Therefore, our scheme is general and can be applied to a large number of tree overlay implementations. We validate its performances in dynamic environments via extensive simulations.
We present PhyShare, a new haptic user interface based on actuated robots. Virtual reality has recently been gaining wide adoption, and an effective haptic feedback in these scenarios can strongly support users sensory in bridging virtual and physical world. Since participants do not directly observe these robotic proxies, we investigate the multiple mappings between physical robots and virtual proxies that can utilize the resources needed to provide a well rounded VR experience. PhyShare bots can act either as directly touchable objects or invisible carriers of physical objects, depending on different scenarios. They also support distributed collaboration, allowing remotely located VR collaborators to share the same physical feedback.
The emergence of the world-wide COVID-19 pandemic has forced academic conferences to be held entirely in a virtual manner. While prior studies have advocated the merits of virtual conferences in terms of energy and cost savings, organizers are increasingly facing the prospect of planning and executing them systematically, in order to deliver a rich conference-attending-experience for all participants. Starting from March 2020, tens of conferences have been held virtually. Past conferences have revealed numerous challenges, from budget planning, to selecting the supporting virtual platforms. Among these, two special challenges were identified: 1) how to deliver talks to geo-distributed attendees and 2) how to stimulate social interactions among attendees. These are the two important goals of an academic conference. In this paper, we advocate a mirror program approach for academic conferences. More specifically, the conference program is executed in multiple parallel (mirrored) programs, so that each mirror program can fit a different time zone. This can effectively address the first challenge.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا