Interactive Computation of Type-Threshold Functions in Collocated Broadcast-Superposition Networks


Abstract in English

In wireless sensor networks, various applications involve learning one or multiple functions of the measurements observed by sensors, rather than the measurements themselves. This paper focuses on type-threshold functions, e.g., the maximum and indicator functions. Previous work studied this problem under the collocated collision network model and showed that under many probabilistic models for the measurements, the achievable computation rates converge to zero as the number of sensors increases. This paper considers two network models reflecting both the broadcast and superposition properties of wireless channels: the collocated linear finite field network and the collocated Gaussian network. A general multi-round coding scheme exploiting not only the broadcast property but particularly also the superposition property of the networks is developed. Through careful scheduling of concurrent transmissions to reduce redundancy, it is shown that given any independent measurement distribution, all type-threshold functions can be computed reliably with a non-vanishing rate in the collocated Gaussian network, even if the number of sensors tends to infinity.

Download