We propose and analyze a two-level method for mimetic finite difference approximations of second order elliptic boundary value problems. We prove that the two-level algorithm is uniformly convergent, i.e., the number of iterations needed to achieve convergence is uniformly bounded independently of the characteristic size of the underling partition. We also show that the resulting scheme provides a uniform preconditioner with respect to the number of degrees of freedom. Numerical results that validate the theory are also presented.
In this paper we propose a finite element method for solving elliptic equations with the observational Dirichlet boundary data which may subject to random noises. The method is based on the weak formulation of Lagrangian multiplier. We show the convergence of the random finite element error in expectation and, when the noise is sub-Gaussian, in the Orlicz 2- norm which implies the probability that the finite element error estimates are violated decays exponentially. Numerical examples are included.
We present a weak finite element method for elliptic problems in one space dimension. Our analysis shows that this method has more advantages than the known weak Galerkin method proposed for multi-dimensional problems, for example, it has higher accuracy and the derived discrete equations can be solved locally, element by element. We derive the optimal error estimates in the discrete $H^1$-norm, the $L_2$-norm and $L_infty$-norm, respectively. Moreover, some superconvergence results are also given. Finally, numerical examples are provided to illustrate our theoretical analysis.
An $hp$ version of interface penalty finite element method ($hp$-IPFEM) is proposed for elliptic interface problems in two and three dimensions on unfitted meshes. Error estimates in broken $H^1$ norm, which are optimal with respect to $h$ and suboptimal with respect to $p$ by half an order of $p$, are derived. Both symmetric and non-symmetric IPFEM are considered. Error estimates in $L^2$ norm are proved by the duality argument.
We design an adaptive unfitted finite element method on the Cartesian mesh with hanging nodes. We derive an hp-reliable and efficient residual type a posteriori error estimate on K-meshes. A key ingredient is a novel hp-domain inverse estimate which allows us to prove the stability of the finite element method under practical interface resolving mesh conditions and also prove the lower bound of the hp a posteriori error estimate. Numerical examples are included.
In this paper, we propose a deep unfitted Nitsche method for computing elliptic interface problems with high contrasts in high dimensions. To capture discontinuities of the solution caused by interfaces, we reformulate the problem as an energy minimization involving two weakly coupled components. This enables us to train two deep neural networks to represent two components of the solution in high-dimensional. The curse of dimensionality is alleviated by using the Monte-Carlo method to discretize the unfitted Nitsche energy function. We present several numerical examples to show the efficiency and accuracy of the proposed method.
Paola F. Antonietti
,Marco Verani
,Ludmil Zikatanov
.
(2013)
.
"A Two-Level Method for Mimetic Finite Difference Discretizations of Elliptic Problems"
.
Paola F. Antonietti
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا