Do you want to publish a course? Click here

Early Phase Observations of the KVN+VERA Joint Array

296   0   0.0 ( 0 )
 Added by Satoko Sawada-Satoh
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The KVN+VERA array is a joint VLBI project of seven VLBI stations spread throughout Korea and Japan. Since the first fringe detection in 2008, the early phase observations of the KVN+VERA have been carried out every several months. Currently, two observing bands of 22 and 43 GHz are available. We are aiming for early realization of science observations with the 1-Gbps recording system from 2012.



rate research

Read More

The Korean very-long-baseline interferometry (VLBI) network (KVN) and VLBI Exploration of Radio Astrometry (VERA) Array (KaVA) is the first international VLBI array dedicated to high-frequency (23 and 43 GHz bands) observations in East Asia. Here, we report the first imaging observations of three bright active galactic nuclei (AGNs) known for their complex morphologies: 4C 39.25, 3C 273, and M 87. This is one of the initial result of KaVA early science. Our KaVA images reveal extended outflows with complex substructure such as knots and limb brightening, in agreement with previous Very Long Baseline Array (VLBA) observations. Angular resolutions are better than 1.4 and 0.8 milliarcsecond at 23 GHz and 43 GHz, respectively. KaVA achieves a high dynamic range of ~1000, more than three times the value achieved by VERA. We conclude that KaVA is a powerful array with a great potential for the study of AGN outflows, at least comparable to the best existing radio interferometric arrays.
We have carried out the first very long baseline interferometry (VLBI) imaging of 44 GHz class I methanol maser (7_{0}-6_{1}A^{+}) associated with a millimeter core MM2 in a massive star-forming region IRAS 18151-1208 with KaVA (KVN and VERA Array), which is a newly combined array of KVN (Korean VLBI Network) and VERA (VLBI Exploration of Radio Astrometry). We have succeeded in imaging compact maser features with a synthesized beam size of 2.7 milliarcseconds x 1.5 milliarcseconds (mas). These features are detected at a limited number of baselines within the length of shorter than approximately 650 km corresponding to 100 Mlambda in the uv-coverage. The central velocity and the velocity width of the 44 GHz methanol maser are consistent with those of the quiescent gas rather than the outflow traced by the SiO thermal line. The minimum component size among the maser features is ~ 5 mas x 2 mas, which corresponds to the linear size of ~ 15 AU x 6 AU assuming a distance of 3 kpc. The brightness temperatures of these features range from ~ 3.5 x 10^{8} to 1.0 x 10^{10} K, which are higher than estimated lower limit from a previous Very Large Array observation with the highest spatial resolution of ~ 50 mas. The 44 GHz class I methanol maser in IRAS 18151-1208 is found to be associated with the MM2 core, which is thought to be less evolved than another millimeter core MM1 associated with the 6.7 GHz class II methanol maser.
We present the results of Very Long Baseline Interferometry (VLBI) observations using the phase reference technique to detect weak Active Galactic Nuclei (AGN) cores in the Virgo cluster. Our observations were carried out using the Korean VLBI Network (KVN). We have selected eight representative radio galaxies, seven Virgo cluster members and one galaxy (NGC 4261) that is likely to be in the background. The selected galaxies are located in a range of density regions showing various morphology in 1.4 GHz continuum. Since half of our targets are too weak to be detected at K-band we applied a phase referencing technique to extend the source integration time by calibrating atmospheric phase fluctuations. We discuss the results of the phase referencing method at high frequency observations and we compare them with self-calibration on the relatively bright AGNs, such as M87, M84 and NGC 4261. In this manuscript we present the radio intensity maps at 22 GHz of the Virgo cluster sample while we demonstrate for first time the capability of KVN phase referencing technique.
93 - Sang-Sung Lee 2015
We report results of the performance evaluation of a new hardware correlator in Korea, the Daejeon correlator, developed by the Korea Astronomy and Space Science Institute (KASI) and the National Astronomical Observatory of Japan (NAOJ). We conducted Very Long Baseline Interferometry (VLBI) observations at 22~GHz with the Korean VLBI Network (KVN) in Korea and the VLBI Exploration of Radio Astrometry (VERA) in Japan, and correlated the aquired data with the Daejeon correlator. For evaluating the performance of the new hardware correlator, we compared the correlation outputs from the Daejeon correlator for KVN observations with those from a software correlator, the Distributed FX (DiFX). We investigated the correlated flux densities and brightness distributions of extragalactic compact radio sources. The comparison of the two correlator outputs show that they are consistent with each other within $<8%$, which is comparable with the amplitude calibration uncertainties of KVN observations at 22~GHz. We also found that the 8% difference in flux density is caused mainly by (a) the difference in the way of fringe phase tracking between the DiFX software correlator and the Daejeon hardware correlator, and (b) an unusual pattern (a double-layer pattern) of the amplitude correlation output from the Daejeon correlator. The visibility amplitude loss by the double-layer pattern is as small as 3%. We conclude that the new hardware correlator produces reasonable correlation outputs for continuum observations, which are consistent with the outputs from the DiFX software correlator.
We present our work towards using the Korean VLBI (Very Long Baseline Interferometer) Network (KVN) and VLBI Exploration of Radio Astronomy (VERA) arrays combined into the KVN and VERA Array (KaVA) for observations of radio pulsars at high frequencies ($simeq$22-GHz). Pulsar astronomy is generally focused at frequencies approximately 0.3 to several GHz and pulsars are usually discovered and monitored with large, single-dish, radio telescopes. For most pulsars, reduced radio flux is expected at high frequencies due to their steep spectrum, but there are exceptions where high frequency observations can be useful. Moreover, some pulsars are observable at high frequencies only, such as those close to the Galactic Center. The discoveries of a radio-bright magnetar and a few dozen extended Chandra sources within 15 arc-minute of the Galactic Center provide strong motivations to make use of the KaVA frequency band for searching pulsars in this region. Here, we describe the science targets and report progresses made from the KVN test observations for known pulsars. We then discuss why KaVA pulsar observations are compelling.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا