Do you want to publish a course? Click here

TempoNest: A Bayesian approach to pulsar timing analysis

316   0   0.0 ( 0 )
 Added by Lindley Lentati
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

A new Bayesian software package for the analysis of pulsar timing data is presented in the form of TempoNest which allows for the robust determination of the non-linear pulsar timing solution simultaneously with a range of additional stochastic parameters. This includes both red spin noise and dispersion measure variations using either power law descriptions of the noise, or through a model-independent method that parameterises the power at individual frequencies in the signal. We use TempoNest to show that at noise levels representative of current datasets in the European Pulsar Timing Array (EPTA) and International Pulsar Timing Array (IPTA) the linear timing model can underestimate the uncertainties of the timing solution by up to an order of magnitude. We also show how to perform Bayesian model selection between different sets of timing model and stochastic parameters, for example, by demonstrating that in the pulsar B1937+21 both the dispersion measure variations and spin noise in the data are optimally modelled by simple power laws. Finally we show that not including the stochastic parameters simultaneously with the timing model can lead to unpredictable variation in the estimated uncertainties, compromising the robustness of the scientific results extracted from such analysis.



rate research

Read More

The extremely regular, periodic radio emission from millisecond pulsars makes them useful tools for studying neutron star astrophysics, general relativity, and low-frequency gravitational waves. These studies require that the observed pulse times of arrival be fit to complex timing models that describe numerous effects such as the astrometry of the source, the evolution of the pulsars spin, the presence of a binary companion, and the propagation of the pulses through the interstellar medium. In this paper, we discuss the benefits of using Bayesian inference to obtain pulsar timing solutions. These benefits include the validation of linearized least-squares model fits when they are correct, and the proper characterization of parameter uncertainties when they are not; the incorporation of prior parameter information and of models of correlated noise; and the Bayesian comparison of alternative timing models. We describe our computational setup, which combines the timing models of Tempo2 with the nested-sampling integrator MultiNest. We compare the timing solutions generated using Bayesian inference and linearized least-squares for three pulsars: B1953+29, J2317+1439, and J1640+2224, which demonstrate a variety of the benefits that we posit.
We introduce a method for performing a robust Bayesian analysis of non-Gaussianity present in pulsar timing data, simultaneously with the pulsar timing model, and additional stochastic parameters such as those describing red spin noise and dispersion measure variations. The parameters used to define the presence of non-Gaussianity are zero for Gaussian processes, giving a simple method of defining the strength of non-Gaussian behaviour. We use simulations to show that assuming Gaussian statistics when the noise in the data is drawn from a non-Gaussian distribution can significantly increase the uncertainties associated with the pulsar timing model parameters. We then apply the method to the publicly available 15 year Parkes Pulsar Timing Array data release 1 dataset for the binary pulsar J0437$-$4715. In this analysis we present a significant detection of non-Gaussianity in the uncorrelated non-thermal noise, but we find that it does not yet impact the timing model or stochastic parameter estimates significantly compared to analysis performed assuming Gaussian statistics. The methods presented are, however, shown to be of immediate practical use for current European Pulsar Timing Array (EPTA) and International Pulsar Timing Array (IPTA) datasets.
We describe the procedure, nuances, issues, and choices involved in creating times-of-arrival (TOAs), residuals and error bars from a set of radio pulsar timing data. We discuss the issue of mis-matched templates, the problem that wide- bandwidth backends introduce, possible solutions to that problem, and correcting for offsets introduced by various observing systems.
The increasing sensitivities of pulsar timing arrays to ultra-low frequency (nHz) gravitational waves promises to achieve direct gravitational wave detection within the next 5-10 years. While there are many parallel efforts being made in the improvement of telescope sensitivity, the detection of stable millisecond pulsars and the improvement of the timing software, there are reasons to believe that the methods used to accurately determine the time-of-arrival (TOA) of pulses from radio pulsars can be improved upon. More specifically, the determination of the uncertainties on these TOAs, which strongly affect the ability to detect GWs through pulsar timing, may be unreliable. We propose two Bayesian methods for the generation of pulsar TOAs starting from pulsar search-mode data and pre-folded data. These methods are applied to simulated toy-model examples and in this initial work we focus on the issue of uncertainties in the folding period. The final results of our analysis are expressed in the form of posterior probability distributions on the signal parameters (including the TOA) from a single observation.
A new Bayesian method for the analysis of folded pulsar timing data is presented that allows for the simultaneous evaluation of evolution in the pulse profile in either frequency or time, along with the timing model and additional stochastic processes such as red spin noise, or dispersion measure variations. We model the pulse profiles using `shapelets - a complete ortho-normal set of basis functions that allow us to recreate any physical profile shape. Any evolution in the profiles can then be described as either an arbitrary number of independent profiles, or using some functional form. We perform simulations to compare this approach with established methods for pulsar timing analysis, and to demonstrate model selection between different evolutionary scenarios using the Bayesian evidence. %s The simplicity of our method allows for many possible extensions, such as including models for correlated noise in the pulse profile, or broadening of the pulse profiles due to scattering. As such, while it is a marked departure from standard pulsar timing analysis methods, it has clear applications for both new and current datasets, such as those from the European Pulsar Timing Array (EPTA) and International Pulsar Timing Array (IPTA).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا