Do you want to publish a course? Click here

An ab initio study of magneto-electric coupling of $rm YMnO_3$

254   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The present paper proposes the direct calculation of the microscopic contributions to the magneto-electric coupling, using ab initio methods. The electrostrictive and the Dzyaloshinskii-Moriya contributions were evaluated individually. For this purpose a specific method was designed, combining DFT calculations and embedded fragments, explicitely correlated, quantum chemical calculations. This method allowed us to calculate the evolution of the magnetic couplings as a function of an applied electric field. We found that in $rm YMnO_3$ the Dzyaloshinskii-Moriya contribution to the magneto-electric effect is three orders of magnitude weaker than the electrostrictive contribution. Strictive effects are thus dominant in the magnetic exchange evolution under an applied electric field, and by extension on the magneto-electric effect. These effects remain however quite small and the modifications of the magnetic excitations under an applied electric field will be difficult to observe experimentally. Another important conclusion is that the amplitude of the magneto-electric effect is very small. Indeed, it can be shown that the linear magneto-electric tensor is null due to the inter-layer symmetry operations.



rate research

Read More

We report an ultrasonic investigation of the elastic moduli on a single crystal of hexagonal YMnO_3 as a function of temperature. Stiffening anomalies in the antiferromagnetic Neel state below T_N = 72.4 K are observed on all the four elastic moduli C_{ii}. The anomalies are the most important on C_{11} and C_{66} for in-plane elastic deformations; this is consistent with a strong coupling of the lattice with the in-plane exchange interactions. We use a Landau free energy model to account for these elastic anomalies. We derive an expression which relates the temperature profile of the anomaly to the order parameter; the critical exponent associated to this parameter $beta$ = 0.42 is not consistent with a chiral XY or 3D Heisenberg universality class, but more in agreement with a conventional antiferromagnetic long range order. A tiny softening anomaly on C_{11} for which hysteresis effects are observed could be indicative of an interaction between ferroelectric and magnetic domains at T_N. Moreover, magnetic fluctuations effects both above and below T_N are identified through abnormal temperature and magnetic field effects.
RESPACK is a first-principles calculation software for evaluating the interaction parameters of materials and is able to calculate maximally localized Wannier functions, response functions based on the random phase approximation and related optical properties, and frequency-dependent electronic interaction parameters. RESPACK receives its input data from a band-calculation code using norm-conserving pseudopotentials with plane-wave basis sets. Automatic generation scripts that convert the band-structure results to the RESPACK inputs are prepared for xTAPP and Quantum ESPRESSO. An input file for specifying the RESPACK calculation conditions is designed pursuing simplicity and is given in the Fortran namelist format. RESPACK supports hybrid parallelization using OpenMP and MPI and can treat large systems including a few hundred atoms in the calculation cell.
Using $textit{ab-initio}$ crystal structure prediction we study the high-pressure phase diagram of $textit{A}BiO_3$ bismuthates ($A$=Ba, Sr, Ca) in a pressure range up to 100$~$GPa. All compounds show a transition from the low-pressure perovskite structure to highly distorted, low-symmetry phases at high pressures (PD transition), and remain charge disproportionated and insulating up to the highest pressure studied. The PD transition at high pressures in bismuthates can be understood as a combined effect of steric arguments and of the strong tendency of bismuth to charge-disproportionation. In fact, distorted structures permit to achieve a very efficient atomic packing, and at the same time, to have Bi-O bonds of different lengths. The shift of the PD transition to higher pressures with increasing cation size within the $textit{A}BiO_3$ series can be explained in terms of chemical pressure.
We combine ab initio density functional theory with transport calculations to provide a microscopic basis for distinguishing between good and poor metal contacts to nanotubes. Comparing Ti and Pd as examples of different contact metals, we trace back the observed superiority of Pd to the nature of the metal-nanotube hybridization. Based on large scale Landauer transport calculations, we suggest that the `optimum metal-nanotube contact combines a weak hybridization with a large contact length between the metal and the nanotube.
Density functional theory calculations within the generalized gradient approximation are employed to study the ground state of Co2FeAl. Various magnetic configurations are considered to find out its most stable phase. The ferromagnetic ground state of the Co2FeAl is energetically observed with an optimized lattice constant of 5.70 {AA}. Thereafter, the system was subjected under uniform and non-uniform strains to see their effects on spin polarization (P) and half-metallicity. The effect of spin orbit coupling is considered in the present study. Half-metallicity (and 100 % P) is only retained under uniform strains started from 0 to +4%, and dropped rapidly from 90% to 16% for the negative strains started from -1% to -6%. We find that the present system is much sensitive under tetragonal distortions as half-metallicity (and 100% P) is preserved only for the cubic case. The main reason for the loss of half-metallicity is due to the shift of the bands with respect to the Fermi level. We also discuss the influence of these results on spintronics devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا