Physical Characterization of Warm Spitzer-observed Near-Earth Objects


Abstract in English

Near-infrared spectroscopy of Near-Earth Objects (NEOs) connects diagnostic spectral features to specific surface mineralogies. The combination of spectroscopy with albedos and diameters derived from thermal infrared observations can increase the scientific return beyond that of the individual datasets. To that end, we have completed a spectroscopic observing campaign to complement the ExploreNEOs Warm Spitzer program that obtained albedos and diameters of nearly 600 NEOs (Trilling et al. 2010). Here we present the results of observations using the low-resolution prism mode (~0.7-2.5 microns) of the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). We also include near-infrared observations of ExploreNEOs targets from the MIT-UH-IRTF Joint Campaign for Spectral Reconnaissance. Our dataset includes near-infrared spectra of 187 ExploreNEOs targets (125 observations of 92 objects from our survey and 213 observations of 154 objects from the MIT survey). We identify a taxonomic class for each spectrum and use band parameter analysis to investigate the mineralogies for the S-, Q-, and V-complex objects. Our analysis suggests that for spectra that contain near-infrared data but lack the visible wavelength region, the Bus-DeMeo system misidentifies some S-types as Q-types. We find no correlation between spectral band parameters and ExploreNEOs albedos and diameters. We find slightly negative Band Area Ratio (BAR) correlations with phase angle for Eros and Ivar, but a positive BAR correlation with phase angle for Ganymed. We find evidence for spectral phase reddening for Eros, Ganymed, and Ivar. We identify the likely ordinary chondrite type analog for a subset of our sample. Our resulting proportions of H, L, and LL ordinary chondrites differ from those calculated for meteorite falls and in previous studies of ordinary chondrite-like NEOs.

Download