Do you want to publish a course? Click here

Radiation and magnetic field effects on new semiconductor power devices for HL-LHC experiments

152   0   0.0 ( 0 )
 Added by Salvatore Fiore PhD
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The radiation hardness of commercial Silicon Carbide and Gallium Nitride power MOSFETs is presented in this paper, for Total Ionizing Dose effects and Single Event Effects, under gamma, neutrons, protons and heavy ions. Similar tests are discussed for commercial DC-DC converters, also tested in operation under magnetic field.



rate research

Read More

86 - G. Abbiendi 2019
The CMS drift tubes (DT) muon detector, built for withstanding the LHC expected integrated and instantaneous luminosities, will be used also in the High Luminosity LHC (HL-LHC) at a 5 times larger instantaneous luminosity and, consequently, much higher levels of radiation, reaching about 10 times the LHC integrated luminosity. Initial irradiation tests of a spare DT chamber at the CERN gamma irradiation facility (GIF++), at large ($sim$O(100)) acceleration factor, showed ageing effects resulting in a degradation of the DT cell performance. However, full CMS simulations have shown almost no impact in the muon reconstruction efficiency over the full barrel acceptance and for the full integrated luminosity. A second spare DT chamber was moved inside the GIF++ bunker in October 2017. The chamber was being irradiated at lower acceleration factors, and only 2 out of the 12 layers of the chamber were switched at working voltage when the radioactive source was active, being the other layers in standby. In this way the other non-aged layers are used as reference and as a precise and unbiased telescope of muon tracks for the efficiency computation of the aged layers of the chamber, when set at working voltage for measurements. An integrated dose equivalent to two times the expected integrated luminosity of the HL-LHC run has been absorbed by this second spare DT chamber and the final impact on the muon reconstruction efficiency is under study. Direct inspection of some extracted aged anode wires presented a melted resistive deposition of materials. Investigation on the outgassing of cell materials and of the gas components used at the GIF++ are underway. Strategies to mitigate the ageing effects are also being developed. From the long irradiation measurements of the second spare DT chamber, the effects of radiation in the performance of the DTs expected during the HL-LHC run will be presented.
159 - A. Ducourthial 2018
The tracking detector of ATLAS, one of the experiments at the Large Hadron Collider (LHC), will be upgraded in 2024-2026 to cope with the challenging environment conditions of the High Luminosity LHC (HL-LHC). The LPNHE, in collaboration with FBK and INFN, has produced 130~$mu$m thick $n-on-p$ silicon pixel sensors which can withstand the expected large particle fluences at HL- LHC, while delivering data at high rate with excellent hit efficiency. Such sensors were tested on beam before and after irradiation both at CERN-SPS and at DESY, and their performances are presented in this paper. Beam test data indicate that these detectors are suited for all the layers where planar sensors are foreseen in the future ATLAS tracker: hit-efficiency is greater than 97% for fluences $Phi lesssim 7times10^{15}rm{n_{eq}/cm^2}$ and module power consumption is within the specified limits. Moreover, at a fluence $Phi = 1.3times10^{16}rm{n_{eq}/cm^2}$, hit-efficiency is still as high as 88% and charge collection efficiency is about 30%.
468 - J. Lange , S. Grinstein , M. Manna 2017
A new generation of 3D silicon pixel detectors with a small pixel size of 50$times$50 and 25$times$100 $mu$m$^{2}$ is being developed for the HL-LHC tracker upgrades. The radiation hardness of such detectors was studied in beam tests after irradiation to HL-LHC fluences up to $1.4times10^{16}$ n$_{mathrm{eq}}$/cm$^2$. At this fluence, an operation voltage of only 100 V is needed to achieve 97% hit efficiency, with a power dissipation of 13 mW/cm$^2$ at -25$^{circ}$C, considerably lower than for previous 3D sensor generations and planar sensors.
Micromegas technology is a promising candidate to replace Atlas forward muon chambers -tracking and trigger- for future HL-LHC upgrade of the experiment. The increase on background and pile-up event probability requires detector performances which are currently under studies in intensive RD activities. We studied performances of four different resistive Micromegas detectors with different read-out strip pitches. These chambers were tested using sim120 GeV momentum pions, at H6 CERN-SPS beam line in autumn 2010. For a strip pitch 500 micrometers we measure a resolution of sim90 micrometers and a efficiency of ~98%. The track angle effect on the efficiency was also studied. Our results show that resistive techniques induce no degradation on the efficiency or resolution, with respect to the standard Micromegas. In some configuration the resistive coating is able to reduce the discharge currents at least by a factor of 100.Micromegas technology is a promising candidate to replace Atlas forward muon chambers -tracking and trigger- for future HL-LHC upgrade of the experiment. The increase on background and pile-up event probability requires detector performances which are currently under studies in intensive RD activities. We studied performances of four different resistive Micromegas detectors with different read-out strip pitches. These chambers were tested using sim120 GeV momentum pions, at H6 CERN-SPS beam line in autumn 2010. For a strip pitch 500 micrometers we measure a resolution of sim90 micrometers and a efficiency of sim98%. The track angle effect on the efficiency was also studied. Our results show that resistive techniques induce no degradation on the efficiency or resolution, with respect to the standard Micromegas. In some configuration the resistive coating is able to reduce the discharge currents at least by a factor of 100.
Resistive-anode Micromegas detectors are in development since several years, in an effort to solve the problem of sparks when working in high flux and high radiations environment like in the HL-LHC (ten times the luminosity of the LHC). They have been chosen as one of the technologies that will be part of the ATLAS New Small Wheel project (forward muon system). An ageing study is mandatory to assess their capabilities to handle the HL-LHC environment on a long-term period. A prototype has been exposed to several types of irradiations (X-rays, cold neutrons, 60 Co gammas) up to an equivalent HL-LHC time of more than five years without showing any degradation of the performances in terms of gain and energy resolution. Beam test studies took place in October 2012 to assess the tracking performances (efficiency, spatial resolution,...). Results of ageing studies and beam test performances are reported in this paper.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا