The reachability problem for vector addition systems with a stack is not elementary


Abstract in English

By adapting the iterative yardstick construction of Stockmeyer, we show that the reachability problem for vector addition systems with a stack does not have elementary complexity. As a corollary, the same lower bound holds for the satisfiability problem for a two-variable first-order logic on trees in which unbounded data may label only leaf nodes. Whether the two problems are decidable remains an open question.

Download