The regularity of geodesics in impulsive pp-waves


Abstract in English

We consider the geodesic equation in impulsive pp-wave space-times in Rosen form, where the metric is of Lipschitz regularity. We prove that the geodesics (in the sense of Caratheodory) are actually continuously differentiable, thereby rigorously justifying the $C^1$-matching procedure which has been used in the literature to explicitly derive the geodesics in space-times of this form.

Download