We consider an open isotropic Heisenberg quantum spin chain, coupled at the ends to boundary reservoirs polarized in different directions, which sets up a twisting gradient across the chain. Using a matrix product ansatz, we calculate the exact magnetization profiles and magnetization currents in the nonequilibrium steady steady state of a chain with N sites. The magnetization profiles are harmonic functions with a frequency proportional to the twisting angle {theta}. The currents of the magnetization components lying in the twisting plane and in the orthogonal direction behave qualitatively differently: In-plane steady state currents scale as 1/N^2 for fixed and sufficiently large boundary coupling, and vanish as the coupling increases, while the transversal current increases with the coupling and saturates to 2{theta}/N.