Do you want to publish a course? Click here

Dead layer on silicon p-i-n diode charged-particle detectors

135   0   0.0 ( 0 )
 Added by Brandon Wall
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Semiconductor detectors in general have a dead layer at their surfaces that is either a result of natural or induced passivation, or is formed during the process of making a contact. Charged particles passing through this region produce ionization that is incompletely collected and recorded, which leads to departures from the ideal in both energy deposition and resolution. The silicon textit{p-i-n} diode used in the KATRIN neutrino-mass experiment has such a dead layer. We have constructed a detailed Monte Carlo model for the passage of electrons from vacuum into a silicon detector, and compared the measured energy spectra to the predicted ones for a range of energies from 12 to 20 keV. The comparison provides experimental evidence that a substantial fraction of the ionization produced in the dead layer evidently escapes by diffusion, with 46% being collected in the depletion zone and the balance being neutralized at the contact or by bulk recombination. The most elementary model of a thinner dead layer from which no charge is collected is strongly disfavored.



rate research

Read More

In this work, two particular properties of the position-sensitive, thick silicon detectors (known as the E detectors) in the High Resolution Array (HiRA) are investigated: the thickness of the dead layer on the front of the detector, and the overall thickness of the detector itself. The dead layer thickness for each E detector in HiRA is extracted using a measurement of alpha particles emitted from a $^{212}$Pb pin source placed close to the detector surface. This procedure also allows for energy calibrations of the E detectors, which are otherwise inaccessible for alpha source calibration as each one is sandwiched between two other detectors. The E detector thickness is obtained from a combination of elastically scattered protons and an energy-loss calculation method. Results from these analyses agree with values provided by the manufacturer.
59 - K. Akiba , R. Aoude , J. Alozy 2015
While designed primarily for X-ray imaging applications, the Medipix3 ASIC can also be used for charged-particle tracking. In this work, results from a beam test at the CERN SPS with irradiated and non-irradiated sensors are presented and shown to be in agreement with simulation, demonstrating the suitability of the Medipix3 ASIC as a tool for characterising pixel sensors.
A study of signals originating near the lithium-diffused n+ contact of p-type point contact (PPC) high purity germanium detectors (HPGe) is presented. The transition region between the active germanium and the fully dead layer of the n+ contact is examined. Energy depositions in this transition region are shown to result in partial charge collection. This provides a mechanism for events with a well defined energy to contribute to the continuum of the energy spectrum at lower energies. A novel technique to quantify the contribution from this source of background is introduced. Experiments that operate germanium detectors with a very low energy threshold may benefit from the methods presented herein.
A detailed study of charge collection efficiency has been performed on the Silicon Drift Detectors (SDD) of the ALICE experiment. Three different methods to study the collected charge as a function of the drift time have been implemented. The first approach consists in measuring the charge at different injection distances moving an infrared laser by means of micrometric step motors. The second method is based on the measurement of the charge injected by the laser at fixed drift distance and varying the drift field, thus changing the drift time. In the last method, the measurement of the charge deposited by atmospheric muons is used to study the charge collection efficiency as a function of the drift time. The three methods gave consistent results and indicated that no charge loss during the drift is observed for the sensor types used in 99% of the SDD modules mounted on the ALICE Inner Tracking System. The atmospheric muons have also been used to test the effect of the zero-suppression applied to reduce the data size by erasing the counts in cells not passing the thresholds for noise removal. As expected, the zero suppression introduces a dependence of the reconstructed charge as a function of drift time because it cuts the signal in the tails of the electron clouds enlarged by diffusion effects. These measurements allowed also to validate the correction for this effect extracted from detailed Monte Carlo simulations of the detector response and applied in the offline data reconstruction.
In the context of the 2013 APS-DPF Snowmass summer study conducted by the U.S. HEP community, this white paper outlines a roadmap for further development of Micro-pattern Gas Detectors for tracking and muon detection in HEP experiments. We briefly discuss technical requirements and summarize current capabilities of these detectors with a focus of operation in experiments at the energy frontier in the medium-term to long-term future. Some key directions for future R&D on Micro-pattern Gas Detectors in the U.S. are suggested.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا