No Arabic abstract
Multiple datasets containing different types of features may be available for a given task. For instance, users profiles can be used to group users for recommendation systems. In addition, a model can also use users historical behaviors and credit history to group users. Each dataset contains different information and suffices for learning. A number of clustering algorithms on multiple datasets were proposed during the past few years. These algorithms assume that at least one dataset is complete. So far as we know, all the previous methods will not be applicable if there is no complete dataset available. However, in reality, there are many situations where no dataset is complete. As in building a recommendation system, some new users may not have a profile or historical behaviors, while some may not have a credit history. Hence, no available dataset is complete. In order to solve this problem, we propose an approach called Collective Kernel Learning to infer hidden sample similarity from multiple incomplete datasets. The idea is to collectively completes the kernel matrices of incomplete datasets by optimizing the alignment of the shared instances of the datasets. Furthermore, a clustering algorithm is proposed based on the kernel matrix. The experiments on both synthetic and real datasets demonstrate the effectiveness of the proposed approach. The proposed clustering algorithm outperforms the comparison algorithms by as much as two times in normalized mutual information.
We propose a deep learning approach for discovering kernels tailored to identifying clusters over sample data. Our neural network produces sample embeddings that are motivated by--and are at least as expressive as--spectral clustering. Our training objective, based on the Hilbert Schmidt Information Criterion, can be optimized via gradient adaptations on the Stiefel manifold, leading to significant acceleration over spectral methods relying on eigendecompositions. Finally, our trained embedding can be directly applied to out-of-sample data. We show experimentally that our approach outperforms several state-of-the-art deep clustering methods, as well as traditional approaches such as $k$-means and spectral clustering over a broad array of real-life and synthetic datasets.
Machine learning techniques have been developed to learn from complete data. When missing values exist in a dataset, the incomplete data should be preprocessed separately by removing data points with missing values or imputation. In this paper, we propose an online approach to handle missing values while a classification model is learnt. To reach this goal, we develop a multi-objective optimization model with two objective functions for imputation and model selection. We also propose three formulations for imputation objective function. We use an evolutionary algorithm based on NSGA II to find the optimal solutions as the Pareto solutions. We investigate the reliability and robustness of the proposed model using experiments by defining several scenarios in dealing with missing values and classification. We also describe how the proposed model can contribute to medical informatics. We compare the performance of three different formulations via experimental results. The proposed model results get validated by comparing with a comparable literature.
We propose a localized approach to multiple kernel learning that can be formulated as a convex optimization problem over a given cluster structure. For which we obtain generalization error guarantees and derive an optimization algorithm based on the Fenchel dual representation. Experiments on real-world datasets from the application domains of computational biology and computer vision show that convex localized multiple kernel learning can achieve higher prediction accuracies than its global and non-convex local counterparts.
Data similarity is a key concept in many data-driven applications. Many algorithms are sensitive to similarity measures. To tackle this fundamental problem, automatically learning of similarity information from data via self-expression has been developed and successfully applied in various models, such as low-rank representation, sparse subspace learning, semi-supervised learning. However, it just tries to reconstruct the original data and some valuable information, e.g., the manifold structure, is largely ignored. In this paper, we argue that it is beneficial to preserve the overall relations when we extract similarity information. Specifically, we propose a novel similarity learning framework by minimizing the reconstruction error of kernel matrices, rather than the reconstruction error of original data adopted by existing work. Taking the clustering task as an example to evaluate our method, we observe considerable improvements compared to other state-of-the-art methods. More importantly, our proposed framework is very general and provides a novel and fundamental building block for many other similarity-based tasks. Besides, our proposed kernel preserving opens up a large number of possibilities to embed high-dimensional data into low-dimensional space.
It has been well demonstrated that inverse reinforcement learning (IRL) is an effective technique for teaching machines to perform tasks at human skill levels given human demonstrations (i.e., human to machine apprenticeship learning). This paper seeks to show that a similar application can be demonstrated with human learners. That is, given demonstrations from human experts inverse reinforcement learning techniques can be used to teach other humans to perform at higher skill levels (i.e., human to human apprenticeship learning). To show this two experiments were conducted using a simple, real-time web game where players were asked to touch targets in order to earn as many points as possible. For the experiment player performance was defined as the number of targets a player touched, irrespective of the points that a player actually earned. This allowed for in-game points to be modified and the effect of these alterations on performance measured. At no time were participants told the true performance metric. To determine the point modifications IRL was applied on demonstrations of human experts playing the game. The results of the experiment show with significance that performance improved over the control for select treatment groups. Finally, in addition to the experiment, we also detail the algorithmic challenges we faced when conducting the experiment and the techniques we used to overcome them.