Do you want to publish a course? Click here

Plasma composition in a sigmoidal anemone active region

174   0   0.0 ( 0 )
 Added by Deborah Baker
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using spectra obtained by the EIS instrument onboard Hinode, we present a detailed spatially resolved abundance map of an active region (AR)-coronal hole (CH) complex that covers an area of 359 arcsec x 485 arcsec. The abundance map provides first ionization potential (FIP) bias levels in various coronal structures within the large EIS field of view. Overall, FIP bias in the small, relatively young AR is 2-3. This modest FIP bias is a consequence of the AR age, its weak heating, and its partial reconnection with the surrounding CH. Plasma with a coronal composition is concentrated at AR loop footpoints, close to where fractionation is believed to take place in the chromosphere. In the AR, we found a moderate positive correlation of FIP bias with nonthermal velocity and magnetic flux density, both of which are also strongest at the AR loop footpoints. Pathways of slightly enhanced FIP bias are traced along some of the loops connecting opposite polarities within the AR. We interpret the traces of enhanced FIP bias along these loops to be the beginning of fractionated plasma mixing in the loops. Low FIP bias in a sigmoidal channel above the ARs main polarity inversion line where ongoing flux cancellation is taking place, provides new evidence of a bald patch magnetic topology of a sigmoid/flux rope configfiuration.



rate research

Read More

Active regions often show S-shaped structures in the corona called sigmoids. These are highly sheared and twisted loops formed along the polarity inversion line. They are considered to be one of the best pre-eruption signatures for CMEs. Here, we investigate the thermodynamic evolution of an on-disk sigmoid observed during December 24-28, 2015. For this purpose, we have employed Emission Measure (EM) and filter-ratio techniques on the observations recorded by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) and X-ray Telescope (XRT) onboard Hinode. The EM analysis showed multi-thermal plasma along the sigmoid and provided a peak temperature of 10-12.5 MK for all observed flares. The sigmoidal structure showed emission from Fe XVIII (93.93 {AA}) and Fe XXI 128.75 {AA}) lines in the AIA 94 and 131 {AA} channels, respectively. Our results show that the hot plasma is often confined to very hot strands. The temperature obtained from the EM analysis was found to be in good agreement with that obtained using the XRT, AIA, and GOES filter-ratio methods. These results provide important constraints for the thermodynamic modeling of sigmoidal structures in the core of active regions. Moreover, this study also benchmarks different techniques available for temperature estimation in solar coronal structures.
212 - X. Cheng , M. D. Ding , J. Zhang 2014
In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1--0.6 km s$^{-1}$. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About two hours before the eruption, indications for a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.
This paper presents a multiwavelength study of the M8.0 flare and its associated fast halo CME that originated from a bipolar active region NOAA 10759 on 2005 May 13. The source active region has a conspicuous sigmoid structure at TRACE 171 A channel as well as in the SXI soft X-ray images, and we mainly concern ourselves with the detailed process of the sigmoid eruption as evidenced by the multiwavelength data ranging from Halpha, WL, EUV/UV, radio, and hard X-rays (HXRs). The most important finding is that the flare brightening starts in the core of the active region earlier than that of the rising motion of the flux rope. This timing clearly addresses one of the main issues in the magnetic eruption onset of sigmoid, namely, whether the eruption is initiated by an internal tether-cutting to allow the flux rope to rise upward or a flux rope rises due to a loss of equilibrium to later induce tether cutting below it. Our high time cadence SXI and Halpha data shows that the first scenario is relevant to this eruption. As other major findings, we have the RHESSI HXR images showing a change of the HXR source from a confined footpoint structure to an elongated ribbon-like structure after the flare maximum, which we relate to the sigmoid-to-arcade evolution. Radio dynamic spectrum shows a type II precursor that occurred at the time of expansion of the sigmoid and a drifting pulsating structure in the flare rising phase in HXR. Finally type II and III bursts are seen at the time of maximum HXR emission, simultaneous with the maximum reconnection rate derived from the flare ribbon motion in UV. We interpret these various observed properties with the runaway tether-cutting model proposed by Moore et al. in 2001.
This paper investigates a quiescent (non-flaring) active region observed on July 13, 2010 in EUV, SXR, and HXRs to search for a hot component that is speculated to be a key signature of coronal heating. We use a combination of RHESSI imaging and long-duration time integration (up to 40 min) to detect the active regions in the 3-8 keV range during apparently non-flaring times. The RHESSI imaging reveals a hot component that originates from the entire active region, as speculated for a nanoflare scenario where the entire active region is filled with a large number of unresolved small energy releases. An isothermal fit to the RHESSI data gives temperatures around ~7 MK with emission measure of several times 10^46 cm^-3. Adding EUV and SXR observations taken by AIA and XRT, respectively, we derive a differential emission measure (DEM) that shows a peak between 2 and 3 MK with a steeply decreasing high-temperature tail, similar to what has been previously reported. The derived DEM reveals that a wide range of temperatures contributes to the RHESSI flux (e.g. 40 % of the 4 keV emission being produced by plasma below 5 MK, while emission at 7 keV is almost exclusively from plasmas above 5 MK) indicating that the RHESSI spectrum should not be fitted with an isothermal. The hot component has a rather small emission measure (~0.1 % of the total EM is above 5 MK), and the derived thermal energy content is of the order of 10 % for a filling factor of unity, or potentially below 1 % for smaller filling factors.
We present new constraints on the high-temperature emission measure of a non-flaring solar active region using observations from the recently flown Focusing Optics X-ray Solar Imager sounding rocket payload. FOXSI has performed the first focused hard X-ray (HXR) observation of the Sun in its first successful flight on 2012 November 2. Focusing optics, combined with small strip detectors, enable high-sensitivity observations with respect to previous indirect imagers. This capability, along with the sensitivity of the HXR regime to high-temperature emission, offers the potential to better characterize high-temperature plasma in the corona as predicted by nanoflare heating models. We present a joint analysis of the differential emission measure (DEM) of active region 11602 using coordinated observations by FOXSI, Hinode/XRT and Hinode/EIS. The Hinode-derived DEM predicts significant emission measure between 1 MK and 3 MK, with a peak in the DEM predicted at 2.0-2.5 MK. The combined XRT and EIS DEM also shows emission from a smaller population of plasma above 8 MK. This is contradicted by FOXSI observations that significantly constrain emission above 8 MK. This suggests that the Hinode DEM analysis has larger uncertainties at higher temperatures and that >8 MK plasma above an emission measure of 3x10^44 cm^-3 is excluded in this active region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا