Do you want to publish a course? Click here

Measures of entanglement in non-Abelian anyonic systems

284   0   0.0 ( 0 )
 Added by Robert Pfeifer
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bipartite entanglement entropies, calculated from the reduced density matrix of a subsystem, provide a description of the resources available within a system for performing quantum information processing. However, these quantities are not uniquely defined on a system of non-Abelian anyons. This paper describes how reduced density matrices and bipartite entanglement entropies (such as the von Neumann and Renyi entropies) may be constructed for non-Abelian anyonic systems, in ways which reduce to the conventional definitions for systems with only local degrees of freedom.



rate research

Read More

Quasiparticle poisoning, expected to arise during the measurement of Majorana zero mode state, poses a fundamental problem towards the realization of Majorana-based quantum computation. Parafermions, a natural generalization of Majorana fermions, can encode topological qudits immune to quasiparticle poisoning. While parafermions are expected to emerge in superconducting fractional quantum Hall systems, they are not yet attainable with current technology. To bypass this problem, we employ a photonic quantum simulator to experimentally demonstrate the key components of parafermion-based universal quantum computation. Our contributions in this article are twofold. First, by manipulating the photonic states, we realize Clifford operator Berry phases that correspond to braiding statistics of parafermions. Second, we investigate the quantum contextuality in a topological system for the first time by demonstrating the contextuality of parafermion encoded qudit states. Importantly, we find that the topologically-encoded contextuality opens the way to magic state distillation, while both the contextuality and the braiding-induced Clifford gates are resilient against local noise. By introducing contextuality, our photonic quantum simulation provides the first step towards a physically robust methodology for realizing topological quantum computation.
We propose a quantum algorithm in an embedding ion-trap quantum simulator for the efficient computation of N-qubit entanglement monotones without the necessity of full tomography. Moreover, we discuss possible realistic scenarios and study the associated decoherence mechanisms.
Topological systems, such as fractional quantum Hall liquids, promise to successfully combat environmental decoherence while performing quantum computation. These highly correlated systems can support non-Abelian anyonic quasiparticles that can encode exotic entangled states. To reveal the non-local character of these encoded states we demonstrate the violation of suitable Bell inequalities. We provide an explicit recipe for the preparation, manipulation and measurement of the desired correlations for a large class of topological models. This proposal gives an operational measure of non-locality for anyonic states and it opens up the possibility to violate the Bell inequalities in quantum Hall liquids or spin lattices.
Entanglement plays a prominent role in the study of condensed matter many-body systems: Entanglement measures not only quantify the possible use of these systems in quantum information protocols, but also shed light on their physics. However, exact analytical results remain scarce, especially for systems out of equilibrium. In this work we examine a paradigmatic one-dimensional fermionic system that consists of a uniform tight-binding chain with an arbitrary scattering region near its center, which is subject to a DC bias voltage at zero temperature. The system is thus held in a current-carrying nonequilibrium steady state, which can nevertheless be described by a pure quantum state. Using a generalization of the Fisher-Hartwig conjecture, we present an exact calculation of the bipartite entanglement entropy of a subsystem with its complement, and show that the scaling of entanglement with the length of the subsystem is highly unusual, containing both a volume-law linear term and a logarithmic term. The linear term is related to imperfect transmission due to scattering, and provides a generalization of the Levitov-Lesovik full counting statistics formula. The logarithmic term arises from the Fermi discontinuities in the distribution function. Our analysis also produces an exact expression for the particle-number-resolved entanglement. We find that although to leading order entanglement equipartition applies, the first term breaking it grows with the size of the subsystem, a novel behavior not observed in previously studied systems. We apply our general results to a concrete model of a tight-binding chain with a single impurity site, and show that the analytical expressions are in good agreement with numerical calculations. The analytical results are further generalized to accommodate the case of multiple scattering regions.
90 - Yichen Huang 2020
My previous work [arXiv:1902.00977] studied the dynamics of Renyi entanglement entropy $R_alpha$ in local quantum circuits with charge conservation. Initializing the system in a random product state, it was proved that $R_alpha$ with Renyi index $alpha>1$ grows no faster than diffusively (up to a sublogarithmic correction) if charge transport is not faster than diffusive. The proof was given only for qubit or spin-$1/2$ systems. In this note, I extend the proof to qudit systems, i.e., spin systems with local dimension $dge2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا