Do you want to publish a course? Click here

Metals and ionizing photons from dwarf galaxies

128   0   0.0 ( 0 )
 Added by Stefania Salvadori
 Publication date 2013
  fields Physics
and research's language is English
 Authors S. Salvadori




Ask ChatGPT about the research

We estimate the potential contribution of M < 10^9 Msun dwarf galaxies to the reionization and early metal-enrichment of the Milky Way environment, or circum-Galactic Medium. Our approach is to use the observed properties of ancient stars (> 12 Gyr old) measured in nearby dwarf galaxies to characterize the star-formation at high-z. We use a merger-tree model for the build-up of the Milky Way, which self-consistently accounts for feedback processes, and which is calibrated to match the present-day properties of the Galaxy and its dwarf satellites. We show that the high-z analogues of nearby dwarf galaxies can produce the bulk of ionizing radiation (>80%) required to reionize the Milky Way environment. Our fiducial model shows that the gaseous environment can be 50% reionized at z ~ 8 by galaxies with 10^7 Msun < M < 10^8 Msun. At later times, radiative feedback stops the star-formation in these small systems, and reionization is completed by more massive dwarf galaxies by z_rei = 6.4pm 0.5. The metals ejected by supernova-driven outflows from M < 10^9 Msun dwarf galaxies almost uniformly fill the Milky Way environment by z ~ 5, enriching it to Z ~ 2 10^-2 Zsun. At z ~ 2 these early metals are still found to represent ~ 50% of the total mass of heavy elements in the circum-Galactic Medium.



rate research

Read More

149 - Ji-hoon Kim 2012
We describe a new method for simulating ionizing radiation and supernova feedback in the analogues of low-redshift galactic disks. In this method, which we call star-forming molecular cloud (SFMC) particles, we use a ray-tracing technique to solve the radiative transfer equation for ultraviolet photons emitted by thousands of distinct particles on the fly. Joined with high numerical resolution of 3.8 pc, the realistic description of stellar feedback helps to self-regulate star formation. This new feedback scheme also enables us to study the escape of ionizing photons from star-forming clumps and from a galaxy, and to examine the evolving environment of star-forming gas clumps. By simulating a galactic disk in a halo of 2.3e11 Msun, we find that the average escape fraction from all radiating sources on the spiral arms (excluding the central 2.5 kpc) fluctuates between 0.08% and 5.9% during a ~20 Myr period with a mean value of 1.1%. The flux of escaped photons from these sources is not strongly beamed, but manifests a large opening angle of more than 60 degree from the galactic pole. Further, we investigate the escape fraction per SFMC particle, f_esc(i), and how it evolves as the particle ages. We discover that the average escape fraction f_esc is dominated by a small number of SFMC particles with high f_esc(i). On average, the escape fraction from a SFMC particle rises from 0.27% at its birth to 2.1% at the end of a particle lifetime, 6 Myrs. This is because SFMC particles drift away from the dense gas clumps in which they were born, and because the gas around the star-forming clumps is dispersed by ionizing radiation and supernova feedback. The framework established in this study brings deeper insight into the physics of photon escape fraction from an individual star-forming clump, and from a galactic disk.
In this paper we calculate the escape fraction ($f_{rm esc}$) of ionizing photons from starburst galaxies. Using 2-D axisymmetric hydrodynamic simulations, we study superbubbles created by overlapping supernovae in OB associations. We calculate the escape fraction of ionizing photons from the center of the disk along different angles through the superbubble and the gas disk. After convolving with the luminosity function of OB associations, we show that the ionizing photons escape within a cone of $sim 40 ^circ$, consistent with observations of nearby galaxies. The evolution of the escape fraction with time shows that it falls initially as cold gas is accumulated in a dense shell. After the shell crosses a few scale heights and fragments, the escape fraction through the polar regions rises again. The angle-averaged escape fraction cannot exceed $sim [1- cos (1 , {rm radian})] = 0.5$ from geometrical considerations (using the emission cone opening angle). We calculate the dependence of the time- and angle-averaged escape fraction on the mid-plane disk gas density (in the range $n_0=0.15-50$ cm $^{-3}$) and the disk scale height (between $z_0=10-600$ pc). We find that the escape fraction is related to the disk parameters (the mid-plane disk density and scale height) roughly so that $f_{rm esc}^alpha n_0^2 z_0^3$ (with $alphaapprox 2.2$) is a constant. For disks with a given WNM temperature, massive disks have lower escape fraction than low mass galaxies. For Milky Way ISM parameters, we find $f_{rm esc}sim 5%$, and it increases to $approx 10%$ for a galaxy ten times less massive. We discuss the possible effects of clumpiness of the ISM on the estimate of the escape fraction and the implications of our results for the reionization of the universe.
We compute the escape of ionizing radiation from galaxies in the redshift interval z=4-10, i.e., during and after the epoch of reionization, using a high-resolution set of galaxies, formed in fully cosmological simulations. The simulations invoke early, energetic feedback, and the galaxies evolve into a realistic population at z=0. Our galaxies cover nearly four orders of magnitude in masses (10^{7.8}-10^{11.5}msun) and more than five orders in star formation rates (10^{-3.5}-10^{1.7}msunyr^{-1}), and we include an approximate treatment of dust absorption. We show that the source-averaged Lyman-limit escape fraction at z=10.4 is close to 80% declining monotonically with time as more massive objects build up at lower redshifts. Although the amount of dust absorption is uncertain to 1-1.5 dex, it is tightly correlated with metallicity; we find that dust is unlikely to significantly impact the observed UV output. These results support reionization by stellar radiation from low-luminosity dwarf galaxies and are also compatible with Lyman continuum observations and theoretical predictions at zsim3-4.
289 - John H. Wise 2008
It has been argued that low-luminosity dwarf galaxies are the dominant source of ionizing radiation during cosmological reionization. The fraction of ionizing radiation that escapes into the intergalactic medium from dwarf galaxies with masses less than ~10^9.5 solar masses plays a critical role during this epoch. Using an extensive suite of very high resolution (0.1 pc), adaptive mesh refinement, radiation hydrodynamical simulations of idealized and cosmological dwarf galaxies, we characterize the behavior of the escape fraction in galaxies between 3 x 10^6 and 3 x 10^9 solar masses with different spin parameters, amounts of turbulence, and baryon mass fractions. For a given halo mass, escape fractions can vary up to a factor of two, depending on the initial setup of the idealized halo. In a cosmological setting, we find that the time-averaged photon escape fraction always exceeds 25% and reaches up to 80% in halos with masses above 10^8 solar masses with a top-heavy IMF. The instantaneous escape fraction can vary up to an order of magnitude in a few million years and tend to be positively correlated with star formation rate. We find that the mean of the star formation efficiency times ionizing photon escape fraction, averaged over all atomic cooling (T_vir > 8000 K) galaxies, ranges from 0.02 for a normal IMF to 0.03 for a top-heavy IMF, whereas smaller, molecular cooling galaxies in minihalos do not make a significant contribution to reionizing the universe due to a much lower star formation efficiency. These results provide the physical basis for cosmological reionization by stellar sources, predominately atomic cooling dwarf galaxies.
To reionize the early universe, high-energy photons must escape the galaxies that produce them. It has been suggested that stellar feedback drives galactic outflows out of star-forming regions, creating low density channels through which ionizing photons escape into the inter-galactic medium. We compare the galactic outflow properties of confirmed Lyman continuum (LyC) leaking galaxies to a control sample of nearby star-forming galaxies to explore whether the outflows from leakers are extreme as compared to the control sample. We use data from the Cosmic Origins Spectrograph on the Hubble Space Telescope to measure the equivalent widths and velocities of Si II and Si III absorption lines, tracing neutral and ionized galactic outflows. We find that the Si II and Si III equivalent widths of the LyC leakers reside on the low-end of the trend established by the control sample. The leakers velocities are not statistically different than the control sample, but their absorption line profiles have a different asymmetry: their central velocities are closer to their maximum velocities. The outflow kinematics and equivalent widths are consistent with the scaling relations between outflow properties and host galaxy properties -- most notably metallicity -- defined by the control sample. Additionally, we use the Lyalpha profiles to show that the Si II equivalent width scales with the Lyalpha peak velocity separation. We determine that the low equivalent widths of the leakers are likely driven by low metallicities and low H I column densities, consistent with a density-bounded ionization region, although we cannot rule out significant variations in covering fraction. While we do not find that the LyC leakers have extreme outflow velocities, the low maximum-to-central velocity ratios demonstrate the importance of the acceleration and density profiles for LyC and Lyalpha escape. [abridged]
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا