Do you want to publish a course? Click here

Benchmarking headtail with electron cloud instabilities observed in the LHC

99   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English
 Authors H. Bartosik




Ask ChatGPT about the research

After a successful scrubbing run in the beginning of 2011, the LHC can be presently operated with high intensity proton beams with 50 ns bunch spacing. However, strong electron cloud effects were observed during machine studies with the nominal beam with 25 ns bunch spacing. In particular, fast transverse instabilities were observed when attempting to inject trains of 48 bunches into the LHC for the first time. An analysis of the turn-by-turn bunch-bybunch data from the transverse damper pick-ups during these injection studies is presented, showing a clear signature of the electron cloud effect. These experimental observations are reproduced using numerical simulations: the electron distribution before each bunch passage is generated with PyECLOUD and used as input for a set of HEADTAIL simulations. This paper describes the simulation method as well as the sensitivity of the results to the initial conditions for the electron build-up. The potential of this type of simulations and their clear limitations on the other hand are discussed.



rate research

Read More

117 - O. Dominguez CERN 2013
During the beam commissioning of the Large Hadron Collider (LHC) with 150, 75, 50 and 25-ns bunch spacing, important electron-cloud effects, like pressure rise, cryogenic heat load, beam instabilities or emittance growth, were observed. A method has been developed to infer different key beam-pipe surface parameters by benchmarking simulations and pressure rise observed in the machine. This method allows us to monitor the scrubbing process (i.e. the reduction of the secondary emission yield as a function of time) in the regions where the vacuum-pressure gauges are located, in order to decide on the most appropriate strategies for machine operation. In this paper we present the methodology and first results from applying this technique to the LHC.
105 - G. Iadarola 2013
Several indicators have pointed to the presence of an Electron Cloud (EC) in some of the CERN accelerators, when operating with closely spaced bunched beams. In particular, spurious signals on the pick ups used for beam detection, pressure rise and beam instabilities were observed at the Proton Synchrotron (PS) during the last stage of preparation of the beams for the Large Hadron Collider (LHC), as well as at the Super Proton Synchrotron (SPS). Since the LHC has started operation in 2009, typical electron cloud phenomena have appeared also in this machine, when running with trains of closely packed bunches (i.e. with spacings below 150ns). Beside the above mentioned indicators, other typical signatures were seen in this machine (due to its operation mode and/or more refined detection possibilities), like heat load in the cold dipoles, bunch dependent emittance growth and degraded lifetime in store and bunch-by-bunch stable phase shift to compensate for the energy loss due to the electron cloud. An overview of the electron cloud status in the different CERN machines (PS, SPS, LHC) will be presented in this paper, with a special emphasis on the dangers for future operation with more intense beams and the necessary countermeasures to mitigate or suppress the effect.
130 - M. Zobov , D. Alesini , A. Drago 2013
During the current run of an electron-positron collider DAFNE special electrodes for electron cloud suppression have been inserted in all dipole and wiggler magnets of the positron ring. In this paper we discuss the impact of these electrodes on beam dynamics and overall collider performance. In particular we report results of measurements such as e-cloud instabilities growth rate, transverse beam size variation, tune shifts along the bunch train etc. with the electrodes switched on and off that clearly indicate the effectiveness of the electrodes for e-cloud suppression.
The Electron Cloud is an undesirable physical phenomenon which might produce single and multi-bunch instability, tune shift, increase of pressure ultimately limiting the performance of particle accelerators. We report our results on the analytical study of the electron dynamics.
194 - S.A. Antipov 2017
An electron cloud instability might limit the intensity in the Fermilab Recycler after the PIP-II upgrade. A multibunch instability typically develops in the horizontal plane within a hundred turns and, in certain conditions, leads to beam loss. Recent studies have indicated that the instability is caused by an electron cloud, trapped in the Recycler index dipole magnets. We developed an analytical model of an electron cloud driven instability with the electrons trapped in combined function dipoles. The resulting instability growth rate of about 30 revolutions is consistent with experimental observations and qualitatively agrees with the simulation in the PEI code. The model allows an estimation of the instability rate for the future intensity upgrades.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا