We propose a scheme to determine the energy-band dispersion of quasicrystals which does not require any periodic approximation and which directly provides the correct structure of the extended Brillouin zones. In the gap labelling viewpoint, this allow to transpose the measure of the integrated density-of-states to the measure of the effective Brillouin-zone areas that are uniquely determined by the position of the Bragg peaks. Moreover we show that the Bragg vectors can be determined by the stability analysis of the law of recurrence used to generate the quasicrystal. Our analysis of the gap labelling in the quasi-momentum space opens the way to an experimental proof of the gap labelling itself within the framework of an optics experiment, polaritons, or with ultracold atoms.