Do you want to publish a course? Click here

Flashing coherently rotating carbon sticks in $^{24}$Mg+$^{24}$Mg collision

529   0   0.0 ( 0 )
 Added by Meirong Huang
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The present discussion rises a number of the questions. For example, is rotational coherence of large molecules necessarily destroyed in the conventionally statistical limit of structureless non-selective continuum (for fixed total spin and parity values) under the conditions of complete intramolecular energy redistribution and vibrational dephasing in the regime of strong ro-vibrational coupling? For the slow cross-symmetry phase relaxation, quantum coherent superpositions of a large number of complex configurations with, e.g., many different total angular momenta produce image of a rotation of macroscopic object with classically fixed (single) total angular momentum. Suppose that the quantum coherent superpositions involving a very large number of different good quantum numbers play a role, in a hidden form, in a formation of macroscopic world. Then why these quantum superpositions are so stable against quick aging/decay of ordered complex structures preventing or slowing down tendencies towards uniform occupation of the available phase space as prescribed by the random matrix theory? And what kind of complex macroscopic phenomena may reveal traces of partially coherent quantum superpositions involving a huge number of quantum-mechanically different integrals of motion behind of what is referred to as conservation laws in classical physics employed for the description of the macroscopic world?



rate research

Read More

Nuclei in the $sd$-shell demonstrate a remarkable interplay of cluster and mean-field phenomena. The $N=Z$ nuclei, such as $^{24}$Mg and $^{28}$Si, have been the focus of the theoretical study of both these phenomena in the past. The cluster and vortical mean-field phenomena can be probed by excitation of isoscalar monopole and dipole states in scattering of isoscalar particles such as deuterons or $alpha$ particles. Inelastically scattered $alpha$ particles were momentum-analysed in the K600 magnetic spectrometer at iThemba LABS, Cape Town, South Africa. The scattered particles were detected in two multi-wire drift chambers and two plastic scintillators placed at the focal plane of the K600. In the theoretical discussion, the QRPA and AMD+GCM were used. The QRPA calculations lead us to conclude that: i) the mean-field vorticity appears mainly in dipole states with $K=1$, ii) the dipole (monopole) states should have strong deformation-induced octupole (quadrupole) admixtures, and iii) that near the $alpha$-particle threshold, there should exist a collective state (with $K=0$ for prolate nuclei and $K=1$ for oblate nuclei) with an impressive octupole strength. The results of the AMD+GCM calculations suggest that some observed states may have a mixed (mean-field + cluster) character or correspond to particular cluster configurations. A tentative correspondence between observed states and theoretical states from QRPA and AMD+GCM was established. The QRPA and AMD+GCM analysis shows that low-energy isoscalar dipole states combine cluster and mean-field properties. The QRPA calculations show that the low-energy vorticity is well localized in $^{24}$Mg, fragmented in $^{26}$Mg, and absent in $^{28}$Si.
We have studied gas-like states of $alpha$ clusters around an $^{16}$O core in $^{24}$Mg based on a microscopic $alpha$-cluster model. This study was performed by introducing a Monte Carlo technique for the description of the THSR (Tohsaki Horiuchi Schuck R{o}pke) wave function, and the coupling effect to other low-lying cluster states was taken into account. A large isoscalar monopole ($E0$) transition strength from the ground to the gas-like state is discussed. The gas-like state of two $alpha$ clusters in $^{24}$Mg around the $^{16}$O core appears slightly below the 2$alpha$-threshold e
379 - Kazuyuki Ogata , Yohei Chiba , 2020
The correspondence between the isoscalar monopole (IS0) transition strengths and $alpha$ inelastic cross sections, the $B({rm IS0})$-$(alpha,alpha)$ correspondence, is investigated for $^{24}$Mg($alpha,alpha$) at 130 and 386 MeV. We adopt a microscopic coupled-channel reaction framework to link structural inputs, diagonal and transition densities, for $^{24}$Mg obtained with antisymmetrized molecular dynamics to the ($alpha,alpha$) cross sections. We aim at clarifying how the $B({rm IS0})$-$(alpha,alpha)$ correspondence is affected by the nuclear distortion, the in-medium modification to the nucleon-nucleon effective interaction in the scattering process, and the coupled-channels effect. It is found that these effects are significant and the explanation of the $B({rm IS0})$-$(alpha,alpha)$ correspondence in the plane wave limit with the long-wavelength approximation, which is often used, makes no sense. Nevertheless, the $B({rm IS0})$-$(alpha,alpha)$ correspondence tends to remain because of a strong constraint on the transition densities between the ground state and the $0^+$ excited states. The correspondence is found to hold at 386 MeV with an error of about 20%-30%, while it is seriously stained at 130 MeV mainly by the strong nuclear distortion. It is also found that when a $0^+$ state that has a different structure from a simple $alpha$ cluster state is considered, the $B({rm IS0})$-$(alpha,alpha)$ correspondence becomes less valid. For a quantitative discussion on the $alpha$ clustering in $0^+$ excited states of nuclei, a microscopic description of both the structure and reaction parts will be necessary.
[Background:] The band structure of the negative-parity states of $^{24}$Mg has not yet been clarified. The $K^pi=0^-$, $K^pi=1^-$, and $K^pi=3^-$ bands have been suggested, but the assignments have been inconsistent between experiments and theories. [Purpose:] Negative-parity states of $^{24}$Mg are investigated by microscopic structure and reaction calculations via proton and alpha inelastic scattering to clarify the band assignment for the observed negative-parity spectra. [Method:] The structure of $^{24}$Mg was calculated using the antisymmetrized molecular dynamics~(AMD). Proton and alpha inelastic reactions were calculated using microscopic coupled-channel (MCC) calculations by folding the Melbourne $g$-matrix $NN$ interaction with the AMD densities of $^{24}$Mg. [Results:] The member states of the $K^pi=0^+$, $K^pi=2^+$, $K^pi=0^-$, $K^pi=1^-$, and $K^pi=3^-$ bands of $^{24}$Mg were obtained through the AMD result. In the MCC+AMD results for proton and alpha elastic and inelastic cross sections, reasonable agreements were obtained with existing data, except in the case of the $4^+_1$ state. [Conclusions:] The $3^-$ state of the $K^pi=3^-$ band and the $1^-$ and $3^-$ states of the $K^pi=0^-$ bands were assigned to the $3^-_1$(7.62 MeV), $1^-_1$(7.56 MeV), and $3^-_2$(8.36 MeV) states, respectively. The present AMD calculation is the first microscopic structure calculation to reproduce the energy ordering of the $K^pi=0^-$, $K^pi=1^-$, and $K^pi=3^-$ bands of $^{24}$Mg.
106 - R. Nouicer , C. Beck , D. Mahboub 1996
The properties of the two-body channels in the $^{35}$Cl + $^{24}$Mg reaction at a bombarding energy of 275 MeV have been investigated by using fragment-fragment coincident techniques. The exclusive data show that the majority of events arises from a binary-decay process. The rather large number of secondary light charged-particles emitted from the two excited exit fragments are cnsistent with the expectations of the Extended Hauser-Feshbach Method. No evidence for the occurence of ternary break-up events is observed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا