No Arabic abstract
Developmental processes in multicellular organisms occur far from equilibrium, yet produce complex patterns with astonishing reproducibility. We measure the precision and reproducibility of bilaterally symmetric fly wings across the natural range of genetic and environmental conditions and find that wing patterns are specified with identical spatial precision and are reproducible to within a single cell width. The early fly embryo operates at a similar degree of reproducibility, suggesting that the overall spatial precision of morphogenesis in Drosophila performs at the single cell level, arguably the physical limit of what a biological system can achieve.
Cell fate decisions in multicellular organisms are precisely coordinated, leading to highly reproducible macroscopic outcomes of developmental processes. The origins of this reproducibility can be found at the molecular level during the earliest stages of development when spatial patterns of morphogen (form-generating) molecules emerge reproducibly. However, the initial conditions for these early stages are determined by the female during oogenesis, and it is unknown whether reproducibility is passed on to the zygote or whether it is reacquired by the zygote. Here we examine the earliest reproducible pattern in the Drosophila embryo, the Bicoid protein gradient. Using a unique combination of absolute molecule counting techniques, we show that it is generated from a highly controlled source of mRNA molecules that is reproducible from embryo to embryo to within ~8%. This occurs in a perfectly linear feed-forward process: changes in the females gene dosage lead to proportional changes in the mRNA and protein counts in the embryo. In this setup, noise is kept low in the transition from one molecular species to another, allowing the female to precisely deposit the same absolute number of mRNA molecules in each embryo and therefore confer reproducibility to the Bicoid pattern. Our results indicate that the reproducibility of the morphological structures that emerge in the embryo originates during oogenesis when all initial patterning signals are controlled with precision similar to what we observe for the Bicoid pattern.
How do you use imaging to analyse the development of the heart, which not only changes shape but also undergoes constant, high-speed, quasi-periodic changes? We have integrated ideas from prospective and retrospective optical gating to capture long-term, phase-locked developmental time-lapse videos. In this paper we demonstrate the success of this approach over a key developmental time period: heart looping, where large changes in heart shape prevent previous prospective gating approaches from capturing phase-locked videos. We use the comparison with other approaches to in vivo heart imaging to highlight the importance of collecting the most appropriate data for the biological question.
There is much to learn through synthesis of Developmental Biology, Cognitive Science and Computational Modeling. One lesson we can learn from this perspective is that the initialization of intelligent programs cannot solely rely on manipulation of numerous parameters. Our path forward is to present a design for developmentally-inspired learning agents based on the Braitenberg Vehicle. Using these agents to exemplify artificial embodied intelligence, we move closer to modeling embodied experience and morphogenetic growth as components of cognitive developmental capacity. We consider various factors regarding biological and cognitive development which influence the generation of adult phenotypes and the contingency of available developmental pathways. These mechanisms produce emergent connectivity with shifting weights and adaptive network topography, thus illustrating the importance of developmental processes in training neural networks. This approach provides a blueprint for adaptive agent behavior that might result from a developmental approach: namely by exploiting critical periods or growth and acquisition, an explicitly embodied network architecture, and a distinction between the assembly of neural networks and active learning on these networks.
The connection between brain and behavior is a longstanding issue in the areas of behavioral science, artificial intelligence, and neurobiology. Particularly in artificial intelligence research, behavior is generated by a black box approximating the brain. As is standard among models of artificial and biological neural networks, an analogue of the fully mature brain is presented as a blank slate. This model generates outputs and behaviors from a priori associations, yet this does not consider the realities of biological development and developmental learning. Our purpose is to model the development of an artificial organism that exhibits complex behaviors. We will introduce our approach, which is to use Braitenberg Vehicles (BVs) to model the development of an artificial nervous system. The resulting developmental BVs will generate behaviors that range from stimulus responses to group behavior that resembles collective motion. Next, we will situate this work in the domain of artificial brain networks. Then we will focus on broader themes such as embodied cognition, feedback, and emergence. Our perspective will then be exemplified by three software instantiations that demonstrate how a BV-genetic algorithm hybrid model, multisensory Hebbian learning model, and multi-agent approaches can be used to approach BV development. We introduce use cases such as optimized spatial cognition (vehicle-genetic algorithm hybrid model), hinges connecting behavioral and neural models (multisensory Hebbian learning model), and cumulative classification (multi-agent approaches). In conclusion, we will revisit concepts related to our approach and how they might guide future development.
Computational methods have reshaped the landscape of modern biology. While the biomedical community is increasingly dependent on computational tools, the mechanisms ensuring open data, open software, and reproducibility are variably enforced by academic institutions, funders, and publishers. Publications may present academic software for which essential materials are or become unavailable, such as source code and documentation. Publications that lack such information compromise the role of peer review in evaluating technical strength and scientific contribution. Incomplete ancillary information for an academic software package may bias or limit any subsequent work produced with the tool. We provide eight recommendations across four different domains to improve reproducibility, transparency, and rigor in computational biology - precisely on the main values which should be emphasized in life science curricula. Our recommendations for improving software availability, usability, and archival stability aim to foster a sustainable data science ecosystem in biomedicine and life science research.