Dual phase Xenon Time Projection Chambers (XeTPCs) are being used by several experiments as a promising technique for direct detection of dark matter. We report on the design and performance of a small 3-D sensitive dual phase XeTPC. The position resolution is 2 mm in the center of detector, limited by the hole size of the mesh at the proportional scintillation region. An energy resolution of 1.6%({sigma} /E) for 662 keV gamma rays is achieved by combining the ionization and scintillation signals at a drift field of 0.5 kV/cm. This represents the best energy resolution achieved among liquid xenon detectors. The energy resolution is only slightly dependent on drift field. Better than 2% energy resolution ({sigma} /E) for 662 keV gamma rays can be achieved for drift fields between 100 V/cm and 2 kV/cm. With high position and energy resolutions, a dual phase XeTPC has also potential applications in surveys for neutrinoless double-beta decay and in gamma ray imaging.