Intermolecular interactions and substrate effects for an adamantane monolayer on the Au(111) surface


Abstract in English

We study theoretically and experimentally the infrared (IR) spectrum of an adamantane monolayer on a Au(111) surface. Using a new STM-based IR spectroscopy technique (IRSTM) we are able to measure both the nanoscale structure of an adamantane monolayer on Au(111) as well as its infrared spectrum, while DFT-based ab initio calculations allow us to interpret the microscopic vibrational dynamics revealed by our measurements. We find that the IR spectrum of an adamantane monolayer on Au(111) is substantially modified with respect to the gas-phase IR spectrum. The first modification is caused by the adamantane--adamantane interaction due to monolayer packing and it reduces the IR intensity of the 2912 cm$^{-1}$ peak (gas phase) by a factor of 3.5. The second modification originates from the adamantane--gold interaction and it increases the IR intensity of the 2938 cm$^{-1}$ peak (gas phase) by a factor of 2.6, and reduces its frequency by 276 cm$^{-1}$. We expect that the techniques described here can be used for an independent estimate of substrate effects and intermolecular interactions in other diamondoid molecules, and for other metallic substrates.

Download