Do you want to publish a course? Click here

On the nature of the brightest globular cluster in M81

398   0   0.0 ( 0 )
 Added by Y. D. Mayya
 Publication date 2013
  fields Physics
and research's language is English
 Authors Y.D. Mayya




Ask ChatGPT about the research

We analyse the photometric, chemical, star formation history and structural properties of the brightest globular cluster (GC) in M81, referred as GC1 in this work, with the intention of establishing its nature and origin. We find that it is a metal-rich ([Fe/H]=-0.60+/-0.10), alpha-enhanced ([Alpha/Fe]=0.20+/0.05), core-collapsed (core radius r_c=1.2 pc, tidal radius r_t = 76r_c), old (>13 Gyr) cluster. It has an ultraviolet excess equivalent of ~2500 blue horizontal branch stars. It is detected in X-rays indicative of the presence of low-mass binaries. With a mass of 10 million solar masses, the cluster is comparable in mass to M31-G1 and is four times more massive than Omega Cen. The values of r_c, absolute magnitude and mean surface brightness of GC1 suggest that it could be, like massive GCs in other giant galaxies, the left-over nucleus of a dissolved dwarf galaxy.



rate research

Read More

443 - Yen-Ting Lin 2009
A novel statistic is proposed to examine the hypothesis that all cluster galaxies are drawn from the same luminosity distribution (LD). In such a statistical model of galaxy LD, the brightest cluster galaxies (BCGs) are simply the statistical extreme of the galaxy population. Using a large sample of nearby clusters, we show that BCGs in high luminosity clusters (e.g., L_tot > 4x10^11 L_sun) are unlikely (probability <3x10^-4) to be drawn from the LD defined by all red cluster galaxies more luminous than M_r=-20. On the other hand, BCGs in less luminous clusters are consistent with being the statistical extreme. Applying our method to the second brightest galaxies, we show that they are consistent with being the statistical extreme, which implies that the BCGs are also distinct from non-BCG luminous, red, cluster galaxies. We point out some issues with the interpretation of the classical tests proposed by Tremaine & Richstone (1977) that are designed to examine the statistical nature of BCGs, investigate the robustness of both our statistical test and those of TR against difficulties in photometry of galaxies of large angular size, and discuss the implication of our findings on surveys that use the luminous red galaxies to measure the baryon acoustic oscillation features in the galaxy power spectrum.
267 - Jun Ma 2012
In this paper, we presented metal abundance properties of 144 M81 globular clusters. These globulars consist of the largest globular cluster sample in M81 till now. Our main results are: the distribution of metallicities are bimodal, with metallicity peaks at [Fe/H]sim-1.51 and -0.58, and the metal-poor globular clusters tend to be less spatially concentrated than the metal-rich ones; the metal-rich globular clusters in M81 do not demonstrate a centrally concentrated spatial distribution as the metal-rich ones in M31 do; like our Galaxy and M31, the globular clusters in M81 have a small radial metallicity gradient. These results are consistent with those obtained based on a small sample of M81 globular clusters. In addition, this paper showed that there is evidence that a strong rotation of the M81 globular cluster system around the minor axis exists, and that rotation is present in the metal-rich globular cluster subsample, while the metal-poor globular cluster subsample shows no evidence for rotation. The most significant difference between the rotation of the metal-rich and metal-poor globular clusters occurs at intermediate projected galactocentric radii. The results of this paper confirm the conclusion of Schroder et al. that M81s metal-rich globular clusters at intermediate projected radii were associated with a thick disk of M81.
We obtained spectra of 74 globular clusters in M81. These globular clusters had been identified as candidates in an HST ACS I-band survey. 68 of these 74 clusters lie within 7 of the M81 nucleus. 62 of these clusters are newly spectroscopically confirmed, more than doubling the number of confirmed M81 GCs from 46 to 108. We determined metallicities for our 74 observed clusters using an empirical calibration based on Milky Way globular clusters. We combined our results with 34 M81 globular cluster velocities and 33 metallicities from the literature and analyzed the kinematics and metallicity of the M81 globular cluster system. The mean of the total sample of 107 metallicities is -1.06 +/- 0.07, higher than either M31 or the Milky Way. We suspect this high mean metallicity is due to an overrepresentation of metal-rich clusters in our sample created by the spatial limits of the HST I-band survey. The metallicity distribution shows marginal evidence for bimodality, with metal-rich and metal-poor peaks approximately matching those of M31 and the Milky Way. The GC system as a whole, and the metal-poor GCs alone, show evidence of a radial metallicity gradient. The M81 globular cluster system as a whole shows strong evidence of rotation, with V_r(deprojected) = 108 +/- 22 km/s overall. This result is likely biased toward high rotational velocity due to overrepresentation of metal-rich, inner clusters. The rotation patterns among globular cluster subpopulations are roughly similar to those of the Milky Way: clusters at small projected radii and metal-rich clusters rotate strongly, while clusters at large projected radii and metal-poor clusters show weaker evidence of rotation.
We present a catalog of extended objects in the vicinity of M81 based a set of 24 Hubble Space Telescope Advanced Camera for Surveys (ACS) Wide Field Camera (WFC) F814W (I-band) images. We have found 233 good globular cluster candidates; 92 candidate HII regions, OB associations, or diffuse open clusters; 489 probable background galaxies; and 1719 unclassified objects. We have color data from ground-based g- and r-band MMT Megacam images for 79 galaxies, 125 globular cluster candidates, 7 HII regions, and 184 unclassified objects. The color-color diagram of globular cluster candidates shows that most fall into the range 0.25 < g-r < 1.25 and 0.5 < r-I < 1.25, similar to the color range of Milky Way globular clusters. Unclassified objects are often blue, suggesting that many of them are likely to be HII regions and open clusters, although a few galaxies and globular clusters may be among them.
Recent precise observations of the 2.7 K CMB by the Planck mission toward the Coma cluster are not in agreement with X-ray measurements. To reconcile both types of measuring techniques we suggest that unstable dark matter is the cause of this mismatch. Decaying dark matter, which gravitationally dominates the galaxy cluster, can affect the estimated hot plasma content, which is then missing in the measured SZ effect from exactly the same place in the sky. The model independent lifetime of dark matter decaying entirely to X-rays is estimated to be about 6x10^{24} sec; this lifetime scales down with the fraction of the radiatively decaying dark matter. In addition, it is shown that the potential of such dark matter investigations in space is superior to the largest volume Earth-bound dark matter decay searches. Other clusters might provide additional evidence for or against this suggestion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا