Do you want to publish a course? Click here

Energetic consequences of flux emergence

97   0   0.0 ( 0 )
 Added by Lucas Tarr
 Publication date 2013
  fields Physics
and research's language is English
 Authors Lucas A. Tarr




Ask ChatGPT about the research

When magnetic field in the solar convection zone buoyantly rises to pierce the visible solar surface (photosphere), the atmosphere (corona) above this surface must respond in some way. One response of the coronal field to photospheric forcing is the creation of stress in the magnetic field, generating large currents and storing magnetic free energy. Using a topological model of the coronal magnetic field we will quantify this free energy. We find the free energy just prior to major flares in active regions to be between 30% and 50% of the potential field energy. In a second way, the coronal field may topologically restructure to form new magnetic connections with newly emerged fields. We use our topological model to quantify the rapid restructuring in the case of solar flare and coronal mass ejections, finding that between 1% and 10% of total active region flux is exchanged. Finally, we use observational data to quantify the slow, quiescent reconnection with preexisting field, and find that for small active regions between 20% and 40% of the total emerged flux may have reconnected at any given time.



rate research

Read More

Large solar flares and eruptions may influence remote regions through perturbations in the outer-atmospheric magnetic field, leading to causally related events outside of the primary or triggering eruptions that are referred to as sympathetic events. We quantify the occurrence of sympathetic events using the full-disk observations by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory associated with all flares of GOES class M5 or larger from 01 May 2010 through 31 December 2014. Using a superposed-epoch analysis, we find an increase in the rate of flares, filament eruptions, and substantial sprays and surges more than 20 degrees away from the primary flares within the first four hours at a significance of 1.8 standard deviations. We also find that the rate of distant events drops by two standard deviations, or a factor of 1.2, when comparing intervals between 4 hours and 24 hours before and after the start times of the primary large flares. We discuss the evidence for the concluding hypothesis that the gradual evolution leading to the large flare and the impulsive release of the energy in that flare both contribute to the destabilization of magnetic configurations in distant active regions and quiet-Sun areas. These effects appear to leave distant regions, in an ensemble sense, in a more stable state, so that fewer energetic events happen for at least a day following large energetic events.
A joint campaign of various space-borne and ground-based observatories, comprising the Japanese Hinode mission (HOP~338, 20,--,30~September 2017), the GREGOR solar telescope, and the textit{Vacuum Tower Telescope} (VTT), investigated numerous targets such as pores, sunspots, and coronal holes. In this study, we focus on the coronal hole region target. On 24~September 2017, a very extended non-polar coronal hole developed patches of flux emergence, which contributed to the decrease of the overall area of the coronal hole. These flux emergence patches erode the coronal hole and transform the area into a more quiet-Sun-like area, whereby bipolar magnetic structures play an important role. Conversely, flux cancellation leads to the reduction of opposite-polarity magnetic fields and to an increase in the area of the coronal hole. Other global coronal hole characteristics, including the evolution of the associated magnetic flux and the aforementioned area evolution in the EUV, are studied using data of the textit{Helioseismic and Magnetic Imager} (HMI) and textit{Atmospheric Imaging Assembly} (AIA) onboard the textit{Solar Dynamics Observatory} (SDO). The interplanetary medium parameters of the solar wind display parameters compatible with the presence of the coronal hole. Furthermore, a particular transient is found in those parameters.
We studied 101 flux emergence events ranging from small ephemeral regions to large emerging flux regions which were observed with Hinode Solar Optical Telescope filtergram. We investigated how the total magnetic flux of the emergence event controls the nature of emergence. To determine the modes of emergences, horizontal velocity fields of global motion of the magnetic patches in the flux emerging sites were measured by the local correlation tracking. Between two main polarities of the large emerging flux regions with more than around 2 times 10^19 Mx, there were the converging flows of anti-polarity magnetic patches. On the other hand, small ephemeral regions showed no converging flow but simple diverging pattern. When we looked into the detailed features in the emerging sites, irrespective of the total flux and the spatial size, all the emergence events were observed to consist of single or multiple elementary emergence unit(s). The typical size of unitary emergence is 4 Mm and consistent with the simulation results. From the statistical study of the flux emergence events, the maximum spatial distance between two main polarities, the magnetic flux growth rate and the mean separation speed were found to follow the power-law functions of the total magnetic flux with the indices of 0.27, 0.57, and -0.16, respectively. From the discussion on the observed power-law relations, we got a physical view of solar flux emergence that emerging magnetic fields float and evolve balancing to the surrounding turbulent atmosphere. Key words: Sun: magnetic fields - Sun: emerging flux - Sun: photosphere - Sun: chromosphere
Elongated magnetic polarities are observed during the emergence phase of bipolar active regions (ARs). These extended features, called magnetic tongues, are interpreted as a consequence of the azimuthal component of the magnetic flux in the toroidal flux-tubes that form ARs. We develop a new systematic and user-independent method to identify AR tongues. Our method is based on determining and analyzing the evolution of the AR main polarity inversion line (PIL). The effect of the tongues is quantified by measuring the acute angle [ tau] between the orientation of the PIL and the direction orthogonal to the AR main bipolar axis. We apply a simple model to simulate the emergence of a bipolar AR. This model lets us interpret the effect of magnetic tongues on parameters that characterize ARs ( e.g. the PIL inclination and the tilt angles, and their evolution). In this idealized kinematic emergence model, tau is a monotonically increasing function of the twist and has the same sign as the magnetic helicity. We systematically apply our procedure to a set of bipolar ARs that were observed emerging in line-of-sight magnetograms over eight years. For most of the cases studied, the tongues only have a small influence on the AR tilt angle since tongues have a much lower magnetic flux than the more concentrated main polarities. From the observed evolution of tau, corrected for the temporal evolution of the tilt angle and its final value when the AR is fully emerged, we estimate the average number of turns in the subphotospherically emerging flux-rope. These values for the 41 observed ARs are below unity, except for one. This indicates that subphotospheric flux-ropes typically have a low amount of twist, i.e. highly twisted flux-tubes are rare. Our results demonstrate that the evolution of the PIL is a robust indicator of the presence of tongues and constrains the amount of twist in emerging flux-tubes
223 - Shin Toriumi 2021
Solar flares and coronal mass ejections are among the most prominent manifestations of the magnetic activity of the Sun. The strongest events of them tend to occur in active regions (ARs) that are large, complex, and dynamically evolving. However, it is not clear what the key observational features of such ARs are, and how these features are produced. This article answers these fundamental questions based on morphological and magnetic characteristics of flare-productive ARs and their evolutionary processes, i.e., large-scale flux emergence and subsequent AR formation, which have been revealed in observational and theoretical studies. We also present the latest modeling of flare-productive ARs achieved using the most realistic flux emergence simulations in a very deep computational domain. Finally, this review discusses the future perspective pertaining to relationships of flaring solar ARs with the global-scale dynamo and stellar superflares.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا