Design and market considerations for axial flux superconducting electric machine design


Abstract in English

In this paper, the authors investigate a number of design and market considerations for an axial flux superconducting electric machine design that uses high temperature superconductors. This work was carried out as part of the University of Cambridges Centre for Entrepreneurial Learning ETECH Project programme, designed to accelerate entrepreneurship and diffusion of innovations based on early stage and potentially disruptive technologies from the University. The axial flux machine design is assumed to utilise high temperature superconductors in both wire (stator winding) and bulk (rotor field) forms, to operate over a temperature range of 65-77 K, and to have a power output in the range from 10s of kW up to 1 MW (typical for axial flux machines), with approximately 2-3 T as the peak trapped field in the bulk superconductors. The authors firstly investigate the applicability of this type of machine as a generator in small- and medium-sized wind turbines, including the current and forecasted market and pricing for conventional turbines. A study is also carried out on the machines applicability as an in-wheel hub motor for electric vehicles. Some recommendations for future applications are made based on the outcome of these two studies. Next, the cost of YBCO-based superconducting (2G HTS) wire is analysed with respect to competing wire technologies and compared with current conventional material costs. Current wire costs for both 1G and 2G HTS are still too great to be economically feasible for such superconducting devices, but round wire, so-called 3G HTS, conductors may be a promising new option with a view to the future. Finally, different cooling options are assessed for the machine design and the analysis suggests that waiting for the maturation of pulse-tube cooling technology may be the best option for this particular application.

Download