Do you want to publish a course? Click here

Quantum Nature of Edge Magnetism in Graphene

130   0   0.0 ( 0 )
 Added by Michael Golor
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is argued that the subtle crossover from decoherence-dominated classical magnetism to fluctuation-dominated quantum magnetism is experimentally accessible in graphene nanoribbons. We show that the width of a nanoribbon determines whether the edge magnetism is on the classical side, on the quantum side, or in between. In the classical regime, decoherence is dominant and leads to static spin polarizations at the ribbon edges, which are well described by mean-field theories. The quantum Zeno effect is identified as the basic mechanism which is responsible for the spin polarization and thereby enables the application of graphene in spintronics. On the quantum side, however, the spin polarization is destroyed by dynamical processes. The great tunability of graphene magnetism thus offers a viable route for the study of the quantum-classical crossover.



rate research

Read More

We study the magnetic properties of nanometer-sized graphene structures with triangular and hexagonal shapes terminated by zig-zag edges. We discuss how the shape of the island, the imbalance in the number of atoms belonging to the two graphene sublattices, the existence of zero-energy states, and the total and local magnetic moment are intimately related. We consider electronic interactions both in a mean-field approximation of the one-orbital Hubbard model and with density functional calculations. Both descriptions yield values for the ground state total spin, $S$, consistent with Liebs theorem for bipartite lattices. Triangles have a finite $S$ for all sizes whereas hexagons have S=0 and develop local moments above a critical size of $approx 1.5$ nm.
120 - N. Kumada , P. Roulleau , B. Roche 2014
We investigate intrinsic and extrinsic decay of edge magnetoplasmons (EMPs) in graphene quantum Hall (QH) systems by high-frequency electronic measurements. From EMP resonances in disk shaped graphene, we show that the dispersion relation of EMPs is nonlinear due to interactions, giving rise to intrinsic decay of EMP wavepacket. We also identify extrinsic dissipation mechanisms due to interaction with localized states in bulk graphene from the decay time of EMP wavepackets. We indicate that, owing to the unique linear and gapless band structure, EMP dissipation in graphene can be lower than that in GaAs systems.
110 - Manuel J. Schmidt 2012
A bosonic field theory is derived for the tunable edge magnetism at graphene zigzag edges. The derivation starts from an effective fermionic theory for the interacting graphene edge states, derived previously from a two-dimensional interacting tight-binding model for graphene. The essential feature of this effective model, which gives rise to the weak edge magnetism, is the momentum-dependent non-local electron-electron interaction. It is shown that this momentum-dependence may be treated by an extension of the bosonization technique, and leads to interactions of the bosonic fields. These interactions are reminiscent of a phi^4 field theory. Focussing onto the regime close to the quantum phase transition between the ferromagnetic and the paramagnetic Luttinger liquid, a semiclassical interpretation of the interacting bosonic theory is given. Furthermore, it is argued that the universal critical behavior at the quantum phase transition between the paramagnetic and the ferromagnetic Luttinger liquid is governed by a small number of terms in this theory, which are accessible by quantum Monte-Carlo methods.
Magnetic carbon nanostructures are currently under scrutiny for a wide spectrum of applications. Here, we theoretically investigate armchair graphene nanoribbons patterned with asymmetric edge extensions consisting of laterally fused naphtho groups, as recently fabricated via on-surface synthesis. We show that an individual edge extension acts as a spin-$frac{1}{2}$ center and develops a sizable spin-polarization of the conductance around the band edges. The Heisenberg exchange coupling between a pair of edge extensions is dictated by the position of the second naphtho group in the carbon backbone, thus enabling ferromagnetic, antiferromagnetic, or non-magnetic states. The periodic arrangement of edge extensions yields full spin-polarization at the band extrema, and the accompanying ferromagnetic ground state can be driven into non-magnetic or antiferromagnetic phases through external stimuli. Overall, our work reveals precise tunability of the ${pi}$-magnetism in graphene nanoribbons induced by naphtho groups, thereby establishing these one-dimensional architectures as suitable platforms for logic spintronics.
We study the magnetic properties of graphene edges and graphene/graphane interfaces under the influence of electrostatic gates. For this, an effective low-energy theory for the edge states, which is derived from the Hubbard model of the honeycomb lattice, is used. We first study the edge state model in a mean-field approximation for the Hubbard Hamiltonian and show that it reproduces the results of the extended 2D lattice theory. Quantum fluctuations around the mean-field theory of the effective one-dimensional model are treated by means of the bosonization technique in order to check the stability of the mean-field solution. We find that edge magnetism at graphene/graphane interfaces can be switched on and off by means of electrostatic gates. We describe a quantum phase transition between an ordinary and a ferromagnetic Luttinger liquid - a realization of itinerant one-dimensional ferromagnetism. This mechanism may provide means to experimentally discriminate between edge magnetism or disorder as the reason for a transport gap in very clean graphene nanoribbons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا