Do you want to publish a course? Click here

Preliminary Analysis of ULPC Light Curves Using Fourier Decomposition Technique

102   0   0.0 ( 0 )
 Added by Chow-Choong Ngeow
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent work on Ultra Long Period Cepheids (ULPCs) has suggested their usefulness as a distance indicator, but has not commented on their relationship as compared with other types of variable stars. In this work, we use Fourier analysis to quantify the structure of ULPC light curves and compare them to Classical Cepheids and Mira variables. Our preliminary results suggest that the low order Fourier parameters of ULPCs show a continuous trend defined by Classical Cepheids after the resonance around 10 days. However their Fourier parameters also overlapped with those from Miras, which make the classification of long period variable stars difficult based on the light curves information alone.



rate research

Read More

The development of surveys which will be able to cover a large region of the sky several times per year will allow the massive detection of transient events taking place in timescales of years. In addition, the projected full digitalization of the Harvard plate collection will open a new window to identify slow transients taking place in timescales of centuries. In particular, these projects will allow the detection of stars undergoing slow eruptions as those expected during late helium flashes in the post-AGB evolution. In order to identify those transients which correspond with late helium flashes the development of synthetic light curves of those events is mandatory. In this connection we present preliminary results of a project aimed at computing grids of theoretical light curves of born again stars.
162 - M. D. Rhodes , E. Budding 2014
We have modified the graphical user interfaced close binary system analysis program CurveFit to the form WinKepler and applied it to 16 representative planetary candidate light curves found in the NASA Exoplanet Archive (NEA) at the Caltech website http://exoplanetarchive.ipac.caltech.edu, with an aim to compare different analytical approaches. WinKepler has parameter options for a realistic physical model, including gravity-brightening and structural parameters derived from the relevant Radau equation. We tested our best-fitting parameter-sets for formal determinacy and adequacy. A primary aim is to compare our parameters with those listed in the NEA. Although there are trends of agreement, small differences in the main parameter values are found in some cases, and there may be some relative bias towards a 90 degrees value for the NEA inclinations. These are assessed against realistic error estimates. Photometric variability from causes other than planetary transits affects at least 6 of the data-sets studied; with small pulsational behaviour found in 3 of those. For the false positive KOI 4.01, we found that the eclipses could be modelled by a faint background classical Algol as effectively as by a transiting exoplanet. Our empirical checks of limb-darkening, in the cases of KOI 1.01 and 12.01, revealed that the assigned stellar temperatures are probably incorrect. For KOI 13.01, our empirical mass-ratio differs by about 7% from that of Mislis and Hodgkin (2012), who neglected structural effects and higher order terms in the tidal distortion. Such detailed parameter evaluation, additional to the usual main geometric ones, provides an additional objective for this work.
With growing data from ongoing and future supernova surveys it is possible to empirically quantify the shapes of SNIa light curves in more detail, and to quantitatively relate the shape parameters with the intrinsic properties of SNIa. Building such relationship is critical in controlling systematic errors associated with supernova cosmology. Based on a collection of well-observed SNIa samples accumulated in the past years, we construct an empirical SNIa light curve model using a statistical method called the functional principal component analysis (FPCA) for sparse and irregularly sampled functional data. Using this method, the entire light curve of an SNIa is represented by a linear combination of principal component functions, and the SNIa is represented by a few numbers called principal component scores. These scores are used to establish relations between light curve shapes and physical quantities such as intrinsic color, interstellar dust reddening, spectral line strength, and spectral classes. These relations allow for descriptions of some critical physical quantities based purely on light curve shape parameters. Our study shows that some important spectral feature information is being encoded in the broad band light curves, for instance, we find that the light curve shapes are correlated with the velocity and velocity gradient of the Si II $lambda$6355 line. This is important for supernova surveys, e.g., LSST and WFIRST. Moreover, the FPCA light curve model is used to construct the entire light curve shape, which in turn is used in a functional linear form to adjust intrinsic luminosity when fitting distance models.
We present the first analysis of results from the SuperWASP Variable Stars Zooniverse project, which is aiming to classify 1.6 million phase-folded light curves of candidate stellar variables observed by the SuperWASP all sky survey with periods detected in the SuperWASP periodicity catalogue. The resultant data set currently contains $>$1 million classifications corresponding to $>$500,000 object-period combinations, provided by citizen scientist volunteers. Volunteer-classified light curves have $sim$89 per cent accuracy for detached and semi-detached eclipsing binaries, but only $sim$9 per cent accuracy for rotationally modulated variables, based on known objects. We demonstrate that this Zooniverse project will be valuable for both population studies of individual variable types and the identification of stellar variables for follow up. We present preliminary findings on various unique and extreme variables in this analysis, including long period contact binaries and binaries near the short-period cutoff, and we identify 301 previously unknown binaries and pulsators. We are now in the process of developing a web portal to enable other researchers to access the outputs of the SuperWASP Variable Stars project.
We have identified some two-hundred new variable stars in a systematic study of a data archive obtained with the Calvin-Rehoboth observatory. Of these, we present five close binaries showing behaviors presumably due to star spots or other magnetic activity. For context, we first present two new RS CVn systems whose behavior can be readily attribute to star spots. Then we present three new close binary systems that are rather atypical, with light curves that are changing over time in ways not easily understood in terms of star spot activity generally associated with magnetically active binary systems called RS CVn systems. Two of these three are contact binaries that exhibit gradual changes in average brightness without noticeable changes in light curve shape. A third system has shown such large changes in light curve morphology that we speculate this may be a rare instance of a system that transitions back and forth between contact and noncontact configurations, perhaps driven by magnetic cycles in at least one member of the binary.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا