No Arabic abstract
We report on a study of the finite-temperature QCD transition region for temperatures between 139 and 196 MeV, with a pion mass of 200 MeV and two space-time volumes: $24^3times8$ and $32^3times8$, where the larger volume varies in linear size between 5.6 fm (at T=139 MeV) and 4.0 fm (at T=195 MeV). These results are compared with the results of an earlier calculation using the same action and quark masses but a smaller, $16^3times8$ volume. The chiral domain wall fermion formulation with a combined Iwasaki and dislocation suppressing determinant ratio gauge action are used. This lattice action accurately reproduces the $sua$ and $ua$ symmetries of the continuum. Results are reported for the chiral condensates, connected and disconnected susceptibilities and the Dirac eigenvalue spectrum. We find a pseudo-critical temperature, $T_c$, of approximately 165 MeV consistent with previous results and strong finite volume dependence below $T_c$. Clear evidence is seen for $ua$ symmetry breaking above $T_c$ which is quantitatively explained by the measured density of near-zero modes in accordance with the dilute instanton gas approximation.
We present results on both the restoration of the spontaneously broken chiral symmetry and the effective restoration of the anomalously broken U(1)_A symmetry in finite temperature QCD at zero chemical potential using lattice QCD. We employ domain wall fermions on lattices with fixed temporal extent N_tau = 8 and spatial extent N_sigma = 16 in a temperature range of T = 139 - 195 MeV, corresponding to lattice spacings of a approx 0.12 - 0.18 fm. In these calculations, we include two degenerate light quarks and a strange quark at fixed pion mass m_pi = 200 MeV. The strange quark mass is set near its physical value. We also present results from a second set of finite temperature gauge configurations at the same volume and temporal extent with slightly heavier pion mass. To study chiral symmetry restoration, we calculate the chiral condensate, the disconnected chiral susceptibility, and susceptibilities in several meson channels of different quantum numbers. To study U(1)_A restoration, we calculate spatial correlators in the scalar and pseudo-scalar channels, as well as the corresponding susceptibilities. Furthermore, we also show results for the eigenvalue spectrum of the Dirac operator as a function of temperature, which can be connected to both U(1)_A and chiral symmetry restoration via Banks-Casher relations.
We show how the standard domain wall action can be simply modified to allow arbitrarily exact chiral symmetry at finite fifth dimensional extent. We note that the method can be used for both quenched and dynamical calculations. We test the method using smooth and thermalized gauge field configurations. We also make comparisons of the performance (cost) of the domain wall operator for spectroscopy compared to other methods such as the overlap-Dirac operator and find both methods are comparable in cost.
Quenched QCD simulations on three volumes, $8^3 times$, $12^3 times$ and $16^3 times 32$ and three couplings, $beta=5.7$, 5.85 and 6.0 using domain wall fermions provide a consistent picture of quenched QCD. We demonstrate that the small induced effects of chiral symmetry breaking inherent in this formulation can be described by a residual mass ($mres$) whose size decreases as the separation between the domain walls ($L_s$) is increased. However, at stronger couplings much larger values of $L_s$ are required to achieve a given physical value of $mres$. For $beta=6.0$ and $L_s=16$, we find $mres/m_s=0.033(3)$, while for $beta=5.7$, and $L_s=48$, $mres/m_s=0.074(5)$, where $m_s$ is the strange quark mass. These values are significantly smaller than those obtained from a more naive determination in our earlier studies. Important effects of topological near zero modes which should afflict an accurate quenched calculation are easily visible in both the chiral condensate and the pion propagator. These effects can be controlled by working at an appropriately large volume. A non-linear behavior of $m_pi^2$ in the limit of small quark mass suggests the presence of additional infrared subtlety in the quenched approximation. Good scaling is seen both in masses and in $f_pi$ over our entire range, with inverse lattice spacing varying between 1 and 2 GeV.
We present results for the dependence of the residual mass of domain wall fermions (DWF) on the size of the fifth dimension and its relation to the density and localization properties of low-lying eigenvectors of the corresponding hermitian Wilson Dirac operator relevant to simulations of 2+1 flavor domain wall QCD. Using the DBW2 and Iwasaki gauge actions, we generate ensembles of configurations with a $16^3times 32$ space-time volume and an extent of 8 in the fifth dimension for the sea quarks. We demonstrate the existence of a regime where the degree of locality, the size of chiral symmetry breaking and the rate of topology change can be acceptable for inverse lattice spacings $a^{-1} ge 1.6$ GeV.
We calculate the spectral function of the QCD Dirac operator using the four-dimensional effective operator constructed from the Mobius domain-wall implementation. We utilize the eigenvalue filtering technique combined with the stochastic estimate of the mode number. The spectrum in the entire eigenvalue range is obtained with a single set of measurements. Results on 2+1-flavor ensembles with Mobius domain-wall sea quarks at lattice spacing ~ 0.08 fm are shown.