Do you want to publish a course? Click here

The Development of High-Performance Alkali-Hybrid Polarized $^3mathrm{He}$ Targets for Electron Scattering

136   0   0.0 ( 0 )
 Added by Jaideep Singh
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the development of high-performance polarized $^3mathrm{He}$ targets for use in electron scattering experiments that utilize the technique of alkali-hybrid spin-exchange optical pumping. We include data obtained during the characterization of 24 separate target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. The results presented here document dramatic improvement in the performance of polarized $^3mathrm{He}$ targets, as well as the target properties and operating parameters that made those improvements possible. Included in our measurements were determinations of the so-called $X$-factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable $^3mathrm{He}$ polarization to well under 100%. The presence of this spin-relaxation mechanism was clearly evident in our data. We also present results from a simulation of the alkali-hydrid spin-exchange optical pumping process that was developed to provide guidance in the design of these targets. Good agreement with actual performance was obtained by including details such as off-resonant optical pumping. Now benchmarked against experimental data, the simulation is useful for the design of future targets. Included in our results is a measurement of the $mathrm{K}$-$^3mathrm{He}$ spin-exchange rate coefficient $k^mathrm{K}_mathrm{se} = left ( 7.46 pm 0.62 right )!times!10^{-20} mathrm{cm^3/s}$ over the temperature range 503 K to 563 K.



rate research

Read More

308 - P. A. M. Dolph 2011
The dynamics of the movement of gas is discussed for two-chambered polarized He-3 target cells of the sort that have been used successfully for many electron scattering experiments. A detailed analysis is presented showing that diffusion is a limiting factor in target performance, particularly as these targets are run at increasingly high luminosities. Measurements are presented on a new prototype polarized He-3 target cell in which the movement of gas is due largely to convection instead of diffusion. NMR tagging techniques have been used to visualize the gas flow, showing velocities along a cylindrically-shaped target of between 5-80 cm/min. The new target design addresses one of the principle obstacles to running polarized He-3 targets at substantially higher luminosities while simultaneously providing new flexibility in target geometry.
We present the conceptual design of a polarized $^3$He target to be used for high luminosity scattering experiments within high magnetic field environments. This two-cell target will take advantage of advancements in optical pumping techniques at high magnetic field to create 60% longitudinally polarized $^3$He gas in a pumping cell within a uniform magnetic field above 1 T. By transferring the polarized gas to cryogenic target cell, the gas density is increased to create a target thickness suitable for high luminosity applications. We discuss the general design of this scheme, and plans for its application in Jefferson Labs CLAS12 detector.
This article reviews the physics and technology of producing large quantities of highly spin-polarized, or hyperpolarized, $^3$He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping, and surveys applications of polarized $^3$He. Several recent developments are emphasized for each method. For SEOP, the use of spectrally narrowed lasers and Rb/K mixtures has substantially increased the achievable polarization and polarizing rate. MEOP in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and has led to the observation of a light-induced relaxation mechanism. In both methods the increased capabilities have led to more extensive study and modeling of the basic underlying physics. New unexplained dependences of relaxation on temperature and magnetic field have been discovered in SEOP cells. Applications of both methods are also reviewed, including targets for charged particle and photon beams, neutron spin filters, magnetic resonance imaging, and precision measurements.
Atomic Parity Violation (APV) is usually quantified in terms of the weak nuclear charge $Q_W$ of a nucleus, which depends on the coupling strength between the atomic electrons and quarks. In this work, we review the importance of APV to probing new physics using effective field theory. Furthermore, using $SU(2)$ invariance, we correlate our findings with those from neutrino-nucleus coherent scattering. Moreover, we investigate signs of parity violation in polarized electron scattering and show how precise measurements on the Weinberg angle, $sin theta_W$, will give rise to competitive bounds on light mediators over a wide range of masses and interactions strength. Lastly, apply our bounds to several models namely, Dark Z, Two Higgs Doublet Model-$U(1)_X$ and 3-3-1, considering both light and heavy mediator regimes.
Theoretical predictions for elastic neutrino-electron scattering have no hadronic or nuclear uncertainties at leading order making this process an important tool for normalizing neutrino flux. However, the process is subject to large radiative corrections that differ according to experimental conditions. In this paper, we collect new and existing results for total and differential cross sections accompanied by radiation of one photon, $ u e to u e (gamma)$. We perform calculations within the Fermi effective theory and provide analytic expressions for the electron energy spectrum and for the total electromagnetic energy spectrum as well as for double- and triple-differential cross sections with respect to electron energy, electron angle, photon energy, and photon angle. We discuss illustrative applications to accelerator-based neutrino experiments and provide the most precise up-to-date values of neutrino-electron scattering cross sections. We present an analysis of theoretical error, which is dominated by the $sim 0.2 - 0.4%$ uncertainty of the hadronic correction. We also discuss how searches for new physics can be affected by radiative corrections.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا