Do you want to publish a course? Click here

Electronic properties of site-controlled (111)-oriented zinc-blende InGaAs/GaAs quantum dots calculated using a symmetry adapted $mathbf{k}cdotmathbf{p}$ Hamiltonian

105   0   0.0 ( 0 )
 Added by Stefan Schulz
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we present and evaluate a (111)-rotated eight-band $mathbf{k}cdotmathbf{p}$ Hamiltonian for the zinc-blende crystal lattice to investigate the electronic properties of site-controlled InGaAs/GaAs quantum dots grown along the [111] direction. We derive the rotated Hamiltonian including strain and piezoelectric potentials. In combination with our previously formulated (111)-oriented continuum elasticity model, we employ this approach to investigate the electronic properties of a realistic site-controlled (111)-grown InGaAs quantum dot. We combine these studies with an evaluation of single-band effective mass and eight-band $mathbf{k}cdotmathbf{p}$ models, to investigate the capabilities of these models for the description of electronic properties of (111)-grown zinc-blende quantum dots. Moreover, the influence of second-order piezoelectric contributions on the polarisation potential in such systems is studied. The description of the electronic structure of nanostructures grown on (111)-oriented surfaces can now be achieved with significantly reduced computational costs in comparison to calculations performed using the conventional (001)-oriented models.



rate research

Read More

We use an $sp^3d^5s^* $ tight-binding model to investigate the electronic and optical properties of realistic site-controlled (111)-oriented InGaAs/GaAs quantum dots. Special attention is paid to the impact of random alloy fluctuations on key factors that determine the fine-structure splitting in these systems. Using a pure InAs/GaAs quantum dot as a reference system, we show that the combination of spin-orbit coupling and biaxial strain effects can lead to sizeable spin-splitting effects in these systems. Then, a realistic alloyed InGaAs/GaAs quantum dot with 25% InAs content is studied. Our analysis reveals that the impact of random alloy fluctuations on the electronic and optical properties of (111)-oriented InGaAs/GaAs quantum dots reduces strongly as the lateral size of the dot increases and approaches realistic sizes. For instance the optical matrix element shows an almost vanishing anisotropy in the (111)-growth plane. Furthermore, conduction and valence band mixing effects in the system under consideration are strongly reduced compared to standard (100)-oriented InGaAs/GaAs systems. All these factors strongly indicate a reduced fine structure splitting in site-controlled (111)-oriented InGaAs/GaAs quantum dots. Thus, we conclude that quantum dots with realistic (50-80~nm) base length represent promising candidates for polarization entangled photon generation, consistent with recent experimental data.
We report both zinc-blende (ZB) and wurtzite (WZ) crystal phase self-assembled GaAs quantum dots (QDs) embedding in a single GaAs/AlGaAs core-shell nanowires (NWs). Optical transitions and single-photon characteristics of both kinds of QDs have been investigated by measuring photoluminescence (PL) and time-resolved PL spectra upon application of hydrostatic pressure. We find that the ZB QDs are of direct band gap transition with short recombination lifetime (~1 ns) and higher pressure coefficient (75-100 meV/GPa). On the contrary, the WZ QDs undergo a direct-to-pseudodirect bandgap transition as a result of quantum confinement effect, with remarkably longer exciton lifetime (4.5-74.5 ns) and smaller pressure coefficient (28-53 meV/GPa). These fundamentally physical properties are further examined by performing state-of-the-art atomistic pseudopotential calculations.
The structural and optical properties of 3 different kinds of GaAs nanowires with 100% zinc-blende structure and with an average of 30% and 70% wurtzite are presented. A variety of shorter and longer segments of zinc-blende or wurtzite crystal phases are observed by transmission electron microscopy in the nanowires. Sharp photoluminescence lines are observed with emission energies tuned from 1.515 eV down to 1.43 eV when the percentage of wurtzite is increased. The downward shift of the emission peaks can be understood by carrier confinement at the interfaces, in quantum wells and in random short period superlattices existent in these nanowires, assuming a staggered band-offset between wurtzite and zinc-blende GaAs. The latter is confirmed also by time resolved measurements. The extremely local nature of these optical transitions is evidenced also by cathodoluminescence measurements. Raman spectroscopy on single wires shows different strain conditions, depending on the wurtzite content which affects also the band alignments. Finally, the occurrence of the two crystallographic phases is discussed in thermodynamic terms.
A novel method for the direct correlation at the nanoscale of structural and optical properties of single GaAs nanowires is reported. Nanowires consisting of 100% wurtzite and nanowires presenting zinc-blende/wurtzite polytypism are investigated by photoluminescence spectroscopy and transmission electron microscopy. The photoluminescence of wurtzite GaAs is consistent with a band gap of 1.5 eV. In the polytypic nanowires, it is shown that the regions that are predominantly composed of either zinc-blende or wurtzite phase show photoluminescence emission close to the bulk GaAs band gap, while regions composed of a nonperiodic superlattice of wurtzite and zinc-blende phases exhibit a redshift of the photoluminescence spectra as low as 1.455 eV. The dimensions of the quantum heterostructures are correlated with the light emission, allowing us to determine the band alignment between these two crystalline phases. Our first-principles electronic structure calculations within density functional theory, employing a hybrid-exchange functional, predict band offsets and effective masses in good agreement with experimental results.
We present here the electronic structure and optical properties of InGaAs quantum wells with barrier doped with Manganese. We calculated the electronic states and optical emission within the envelope function and effective mass approximations using the spin-density functional theory in the presence of an external magnetic field. We observe magneto-oscillations of the Landau levels at low-magnetic fields (B < 5 T) that are dominated by the magnetic interaction between holes spin and Mn spin, while at high magnetic fields the spin-polarization of the hole gas is the dominant effect. Our results also show that a gate voltage alter significantly the magneto-oscillations of the emission energy and may be an external control parameter for the magnetic properties of the system. Finally, we discuss the influence of the Landau Levels oscillations in the emission spectra and compare with available experimental.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا