No Arabic abstract
We observed H2 line emission with Spitzer-IRS toward M17-SW and modeled the data with our PDR code. Derived gas density values of up to few times 10^7 cm^-3 indicate that H2 emission originates in high-density clumps. We discover that the PDR code can be utilized to map the amount of intervening extinction obscuring the H2 emission layers, and thus we obtain the radial profile of A_V relative to the central ionizing cluster NGC 6618. The extinction has a positive radial gradient, varying between 15--47 mag over the projected distance of 0.9--2.5 pc from the primary ionizer, CEN 1. These high extinction values are in good agreement with previous studies of A_V toward stellar targets in M17-SW. The ratio of data to PDR model values is used to infer the global line-of-sight structure of the PDR surface, which is revealed to resemble a concave surface relative to NGC 6618. Such a configuration confirms that this PDR can be described as a bowl-shaped boundary of the central H II region in M17. The derived structure and physical conditions are important for interpreting the fine-structure and rotational line emission from the PDR.
Since the main cooling lines of the gas phase are important tracers of the interstellar medium in Galactic and extragalactic sources, proper and detailed understanding of their emission, and the ambient conditions of the emitting gas, is necessary for a robust interpretation of the observations. With high resolution (7-9) maps (~3x3 pc^2) of mid-J molecular lines we aim to probe the physical conditions and spatial distribution of the warm (50 to few hundred K) and dense gas (n(H_2)>10^5 cm^-3) across the interface region of M17 SW nebula. We have used the dual color multiple pixel receiver CHAMP+ on APEX telescope to obtain a 5.3x4.7 map of the J=6-5 and J=7-6 transitions of 12CO, the 13CO J=6-5 line, and the {^3P_2}-{^3P_1} 370 um fine-structure transition of [C I] in M17 SW. LTE and non-LTE radiative transfer models are used to constrain the ambient conditions. The warm gas extends up to a distance of ~2.2 pc from the M17 SW ridge. The 13CO J=6-5 and [C I] 370 um lines have a narrower spatial extent of about 1.3 pc along a strip line at P.A=63 deg. The structure and distribution of the [C I] {^3P_2}-{^3P_1} 370 um map indicate that its emission arises from the interclump medium with densities of the order of 10^3 cm^-3. The warmest gas is located along the ridge of the cloud, close to the ionization front. An LTE approximation indicates that the excitation temperature of the embedded clumps goes up to ~120 K. The non-LTE model suggests that the kinetic temperature at four selected positions cannot exceed 230 K in clumps of density n(H_2)~5x10^5 cm^-3, and that the warm T_k>100 K and dense (n(H_2)>10^4 cm^-3) gas traced by the mid-J 12CO lines represent just about 2% of the bulk of the molecular gas. The clump volume filling factor ranges between 0.04 and 0.11 at these positions.
We probe the chemical and energetic conditions in dense gas created by radiative feedback through observations of multiple CO, HCN and HCO$^+$ transitions toward the dense core of M17 SW. We used the dual band receiver GREAT on board the SOFIA airborne telescope to obtain maps of the $J=16-15$, $J=12-11$, and $J=11-10$ transitions of $^{12}$CO. We compare these maps with corresponding APEX and IRAM 30m telescope data for low- and mid-$J$ CO, HCN and HCO$^+$ emission lines, including maps of the HCN $J=8-7$ and HCO$^+$ $J=9-8$ transitions. The excitation conditions of $^{12}$CO, HCO$^+$ and HCN are estimated with a two-phase non-LTE radiative transfer model of the line spectral energy distributions (LSEDs) at four selected positions. The energy balance at these positions is also studied. We obtained extensive LSEDs for the CO, HCN and HCO$^+$ molecules toward M17 SW. The LSED shape, particularly the high-$J$ tail of the CO lines observed with SOFIA/GREAT, is distinctive for the underlying excitation conditions. The critical magnetic field criterion implies that the cold cloudlets at two positions are partially controlled by processes that create and dissipate internal motions. Supersonic but sub-Alfvenic velocities in the cold component at most selected positions indicates that internal motions are likely MHD waves. Magnetic pressure dominates thermal pressure in both gas components at all selected positions, assuming random orientation of the magnetic field. The magnetic pressure of a constant magnetic field throughout all the gas phases can support the total internal pressure of the cold components, but it cannot support the internal pressure of the warm components. If the magnetic field scales as $B propto n^{2/3}$, then the evolution of the cold cloudlets at two selected positions, and the warm cloudlets at all selected positions, will be determined by ambipolar diffusion.
We present an analysis of Spitzer-IRS spectroscopic maps of the L1157 protostellar outflow in the H2 pure-rotational lines from S(0) to S(7). The aim of this work is to derive the physical conditions pertaining to the warm molecular gas and study their variations within the flow. The mid-IR H2 emission follows the morphology of the precessing flow, with peaks correlated with individual CO clumps and H2 2.12{mu}m ro-vibrational emission. More diffuse emission delineating the CO cavities is detected only in the low-laying transitions, with J(lower) less or equal to 2. The H2 line images have been used to construct 2D maps of N(H2), H2 ortho-to-para ratio and temperature spectral index beta, in the assumption of a gas temperature stratification where the H2 column density varies as T^(beta). Variations of these parameters are observed along the flow. In particular, the ortho-to-para ratio ranges from 0.6 to 2.8, highlighting the presence of regions subject to recent shocks where the ortho-to-para ratio has not had time yet to reach the equilibrium value. Near-IR spectroscopic data on ro-vibrational H2 emission have been combined with the mid-IR data and used to derive additional shock parameters in the brightest blue- and red-shifted emission knots. A high abundance of atomic hydrogen (H/H2 about 0.1-0.3) is implied by the observed H2 column densities, assuming n(H2) values as derived by independent SiO observations. The presence of a high fraction of atomic hydrogen, indicates that a partially-dissociative shock component should be considered for the H2 excitation in these localized regions. However, planar shock models, either of C- or J-type, are not able to consistently reproduce all the physical parameters derived from our analysis of the H2 emission. Globally, H2 emission contributes to about 50% of the total shock radiated energy in the L1157 outflow.
The analysis and interpretation of the H2 line emission from planetary nebulae have been done in the literature assuming that the molecule survives only in regions where the hydrogen is neutral, as in photodissociation, neutral clumps or shocked regions. However, there is strong observational and theoretical evidence that at least part of the H2 emission is produced inside the ionized region of such objects. The aim of the present work is to calculate and analyze the infrared line emission of H2 produced inside the ionized region of planetary nebulae using a one-dimensional photoionization code. The photoionization code Aangaba was improved in order to calculate the statistical population of the H2 energy levels and the intensity of the H2 infrared emission lines in physical conditions typical of planetary nebulae. A grid of models was obtained and the results are analyzed and compared with the observational data. We show that the contribution of the ionized region to the H2 line emission can be important, particularly in the case of nebulae with high temperature central stars. This result explains why H2 emission is more frequently observed in bipolar planetary nebulae (Gatleys rule), since this kind of object typically has hotter stars. Collisional excitation plays an important role on the population of the rovibrational levels of the electronic ground state of H2. Radiative mechanisms are also important, particularly for the upper vibrational levels. Formation pumping can have minor effects on the line intensities produced by de-excitation from very high rotational levels, especially in dense and dusty environments. We included the effect of the H2 on the thermal equilibrium of the gas, concluding that H2 only contributes to the thermal equilibrium in the case of a very high temperature of the central star or a high dust-to-gas ratio, mainly through collisional de-excitation.
We conducted a comprehensive study on the shell structure of the Cygnus Loop using 41 observation data obtained by the Suzaku and the XMM-Newton satellites. To investigate the detailed plasma structure of the Cygnus Loop, we divided our fields of view into 1042 box regions. From the spectral analysis, the spectra obtained from the limb of the Loop are well fitted by the single-component non-equilibrium ionization plasma model. On the other hand, the spectra obtained from the inner regions are well fitted by the two-component model. As a result, we confirmed that the low-temperature and the high-temperature components originated from the surrounding interstellar matter (ISM) and the ejecta of the Loop, respectively. From the best-fit results, we showed a flux distribution of the ISM component. The distribution clearly shows the limb-brightening structure, and we found out some low-flux regions. Among them, the south blowout region has the lowest flux. We also found other large low-flux regions at slightly west and the northeast from the center. We estimated the former thin shell region to be 1.3 degrees in diameter and concluded that there exists a blowout along the line of sight in addition to the south blowout. We also calculated the emission measure distribution of the ISM component and showed that the Cygnus Loop is far from the result obtained by a simple Sedov evolution model. From the results, we support that the Cygnus Loop originated from a cavity explosion. The emission measure distribution also suggests that the cavity-wall density is higher in the northeast than that in the southwest. These results suggest that the thickness of the cavity wall surrounding the Cygnus Loop is not uniform.