Do you want to publish a course? Click here

Precision near-infrared radial velocity instrumentation II: Non-Circular Core Fiber Scrambler

146   0   0.0 ( 0 )
 Added by Peter Plavchan
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have built and commissioned a prototype agitated non-circular core fiber scrambler for precision spectroscopic radial velocity measurements in the near-infrared H band. We have collected the first on-sky performance and modal noise tests of these novel fibers in the near-infrared at H and K bands using the CSHELL spectrograph at the NASA InfraRed Telescope Facility (IRTF). We discuss the design behind our novel reverse injection of a red laser for co-alignment of star-light with the fiber tip via a corner cube and visible camera. We summarize the practical details involved in the construction of the fiber scrambler, and the mechanical agitation of the fiber at the telescope. We present radial velocity measurements of a bright standard star taken with and without the fiber scrambler to quantify the relative improvement in the obtainable blaze function stability, the line spread function stability, and the resulting radial velocity precision. We assess the feasibility of applying this illumination stabilization technique to the next generation of near-infrared spectrographs such as iSHELL on IRTF and an upgraded NIRSPEC at Keck. Our results may also be applied in the visible for smaller core diameter fibers where fiber modal noise is a significant factor, such as behind an adaptive optics system or on a small < 1 meter class telescope such as is being pursued by the MINERVA and LCOGT collaborations.



rate research

Read More

We have built and commissioned gas absorption cells for precision spectroscopic radial velocity measurements in the near-infrared in the H and K bands. We describe the construction and installation of three such cells filled with 13CH4, 12CH3D, and 14NH3 for the CSHELL spectrograph at the NASA Infrared Telescope Facility (IRTF). We have obtained their high-resolution laboratory Fourier Transform spectra, which can have other practical uses. We summarize the practical details involved in the construction of the three cells, and the thermal and mechanical control. In all cases, the construction of the cells is very affordable. We are carrying out a pilot survey with the 13CH4 methane gas cell on the CSHELL spectrograph at the IRTF to detect exoplanets around low mass and young stars. We discuss the current status of our survey, with the aim of photon-noise limited radial velocity precision. For adequately bright targets, we are able to probe a noise floor of 7 m/s with the gas cell with CSHELL at cassegrain focus. Our results demonstrate the feasibility of using a gas cell on the next generation of near-infrared spectrographs such as iSHELL on IRTF, iGRINS, and an upgraded NIRSPEC at Keck.
Modal noise in fibers has been shown to limit the signal-to-noise ratio achievable in fiber-coupled, high-resolution spectrographs if it is not mitigated via modal scrambling techniques. Modal noise become significantly more important as the wavelength increases and presents a risk to the new generation of near-infrared precision radial spectrographs under construction or being proposed to search for planets around cool M-dwarf stars, which emit most of their light in the NIR. We present experimental results of tests at Penn State University characterizing modal noise in the far visible out to 1.5 microns and the degree of modal scrambling we obtained using mechanical scramblers. These efforts are part of a risk mitigation effort for the Habitable Zone Planet Finder spectrograph currently under development at Penn State University.
403 - F. Bouchy , R.F. Diaz , G. Hebrard 2012
High-precision spectrographs play a key role in exoplanet searches and Doppler asteroseismology using the radial velocity technique. The 1 m/s level of precision requires very high stability and uniformity of the illumination of the spectrograph. In fiber-fed spectrographs such as SOPHIE, the fiber-link scrambling properties are one of the main conditions for high precision. To significantly improve the radial velocity precision of the SOPHIE spectrograph, which was limited to 5-6 m/s, we implemented a piece of octagonal-section fiber in the fiber link. We present here the scientific validation of the upgrade of this instrument, demonstrating a real improvement. The upgraded instrument, renamed SOPHIE+, reaches radial velocity precision in the range of 1-2 m/s. It is now fully efficient for the detection of low-mass exoplanets down to 5-10 Earth mass and for the identification of acoustic modes down to a few tens of cm/s.
Precision radial velocity (RV) measurements in the near-infrared are a powerful tool to detect and characterize exoplanets around low-mass stars or young stars with higher magnetic activity. However, the presence of strong telluric absorption lines and emission lines in the near infrared that significantly vary in time can prevent extraction of RV information from these spectra by classical techniques, which ignore or mask the telluric lines. We present a methodology and pipeline to derive precision RVs from near-infrared spectra using a forward-modeling technique. We applied this to spectra with a wide wavelength coverage (Y, J, and H bands, simultaneously), taken by the InfraRed Doppler (IRD) spectrograph on the Subaru 8.2-m telescope. Our pipeline extracts the instantaneous instrumental profile of the spectrograph for each spectral segment, based on a reference spectrum of the laser-frequency comb that is injected into the spectrograph simultaneously with the stellar light. These profiles are used to derive the intrinsic stellar template spectrum, which is free from instrumental broadening and telluric features, as well as model and fit individual observed spectra in the RV analysis. Implementing a series of numerical simulations using theoretical spectra that mimic IRD data, we test the pipeline and show that IRD can achieve $<2$ m s$^{-1}$ precision for slowly rotating mid-to-late M dwarfs with a signal-to-noise ratio $> 100$ per pixel at 1000 nm. Dependences of RV precision on various stellar parameters (e.g., $T_{rm eff}$, $vsin i$, [Fe/H]) and the impact of telluric-line blendings on the RV accuracy are discussed through the mock spectra analyses. We also apply the RV-analysis pipeline to the observed spectra of GJ 699 and TRAPPIST-1, demonstrating that the spectrograph and the pipeline are capable of an RV accuracy of $<3$ m s$^{-1}$ at least on a time scale of a few months.
We have measured the radial velocities of five 51 Peg-type stars and one star with constant velocity. Our measurements, on 20 AA centered at 3947 AA, were conventional using Th/Ar comparison spectra taken every 20 or 40 minutes between the stellar exposures. Existing IRAF routines were used for the reduction. We find $sigma_{RV}$ $leq$ 20 m s$^{-1}$, provided 4 measurements (out of 72) with residuals $>5sigma_{RV}$ are neglected. The observations were made with the CFHT Gecko spectrograph, fiber-fed with the CAFE system (R$sim$110,000). $sigma_{RV}$ $leq$10 m s$^{-1}$ seems possible with additional care. This study was incidental to the main program and so not exhaustive but the small value of $sigma_{RV}$ implies that the fiber feed/image slicer system on Gecko + CAFE, essentially eliminates the long standing problem of guiding errors in radial velocity measurements. We are not suggesting this conventional approach for serious Doppler planet searches (especially with Gecko which has such a small multiplex gain), but the precision is valuable for observations made in spectral regions remote from telluric lines or captive-gas fiducials. Instrument builders might consider the advantages of the CAFE optics which incorporate agitation and invert the object and pupil for slit and grating illumination in future spectrograph designs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا