Relativistic symmetry in deformed nuclei by similarity renormalization group


Abstract in English

The similarity renormalization group is used to transform a general Dirac Hamiltonian into diagonal form. The diagonal Dirac operator consists of the nonrelativistic term, the spin-orbit term, the dynamical term, and the relativistic modification of kinetic energy, which are very useful to explore the symmetries hidden in the Dirac Hamiltonian for any deformed system. As an example, the relativistic symmetries in an axially deformed nucleus are investigated by comparing the contributions of every term to the single particle energies and their correlations with the deformation. The result shows that the deformation considerably influences the spin-orbit interaction and dynamical effect, which play a critical role in the relativistic symmetries and its breaking.

Download