We compute the modifications to the attractor mechanism due to fermionic corrections. In N=2, D=4 supergravity, at the fourth order, we find a new contribution to the horizon values of the scalar fields of the vector multiplets.
We compute the wig for the BTZ black hole, namely the complete non-linear solution of supergravity equations with all fermionic zero modes. We use a gauge completion method starting from AdS_3 Killing spinors to generate the gravitinos fields associated to the BH and we compute the back-reaction on the metric. Due to the anticommutative properties of the fermionic hairs the resummation of these effects truncates at some order. We illustrate the technique proposed in a precedent paper in a very explicit and analytical form. We also compute the mass, the angular momentum and other charges with their corrections.
We provide the metric, the gravitino fields and the gauge fields to all orders in the fermionic zero modes for D=5 and D=4, N=2 gauged supergravity solutions starting from non-extremal AdS--Schwarzschild black holes. We compute the Brown-York stress--energy tensor on the boundary of AdS_5 / AdS_4 spaces and we discuss some implications of the fermionic corrections to perfect fluid interpretation of the boundary theory. The complete non-linear solution, which we denote as fermionic wig, is achieved by acting with supersymmetry transformations upon the supergravity fields and that expansion naturally truncates at some order in the fermionic zero modes.
In this PhD thesis, we investigate generic features of inflation which are strictly related to fundamental aspects of UV-physics scenarios, such as string theory or supergravity. After a short introduction to standard and inflationary cosmology, we present our research findings. On the one hand, we show that focusing on universality properties of inflation can yield surprisingly stringent bounds on its dynamics. This approach allows us to identify the regime where the inflationary field range is uniquely determined by both the tensor-to-scalar ratio and the spectral index. Then, we derive a novel field-range bound, which is two orders of magnitude stronger than the original one derived by Lyth. On the other hand, we discuss the embedding of inflation in supergravity and prove that non-trivial hyperbolic Kahler geometries induce an attractor for the inflationary observables: the spectral tilt tends automatically to the center of the Planck dome whereas the amount of primordial gravitational waves is directly controlled by curvature of the internal manifold. We identify the origin of this attractor mechanism in the so-called $alpha$-scale supergravity model. Finally, we show how the inclusion of a nilpotent sector, allowing for a unified description of inflation and dark energy, implies an enhancement of the attractor nature of the theory. The main results of this thesis have been already published elsewhere. However, here we pay special attention to present them in a comprehensive way and provide the reader with the necessary background.
We apply the entropy formalism to the study of the near-horizon geometry of extremal black p-brane intersections in D>5 dimensional supergravities. The scalar flow towards the horizon is described in terms an effective potential given by the superposition of the kinetic energies of all the forms under which the brane is charged. At the horizon active scalars get fixed to the minima of the effective potential and the entropy function is given in terms of U-duality invariants built entirely out of the black p-brane charges. The resulting entropy function reproduces the central charges of the dual boundary CFT and gives rise to a Bekenstein-Hawking like area law. The results are illustrated in the case of black holes and black string intersections in D=6, 7, 8 supergravities where the effective potentials, attractor equations, moduli spaces and entropy/central charges are worked out in full detail.
I show that the problem of realizing inflation in theories with random potentials of a limited number of fields can be solved, and agreement with the observational data can be naturally achieved if at least one of these fields has a non-minimal kinetic term of the type used in the theory of cosmological $alpha$-attractors.