Maximizing Kepler science return per telemetered pixel: Searching the habitable zones of the brightest stars


Abstract in English

In todays mailing, Hogg et al. propose image modeling techniques to maintain 10-ppm-level precision photometry in Kepler data with only two working reaction wheels. While these results are relevant to many scientific goals for the repurposed mission, all modeling efforts so far have used a toy model of the Kepler telescope. Because the two-wheel performance of Kepler remains to be determined, we advocate for the consideration of an alternate strategy for a >1 year program that maximizes the science return from the low-torque fields across the ecliptic plane. Assuming we can reach the precision of the original Kepler mission, we expect to detect 800 new planet candidates in the first year of such a mission. Our proposed strategy has benefits for transit timing variation and transit duration variation studies, especially when considered in concert with the future TESS mission. We also expect to help address the first key science goal of Kepler: the frequency of planets in the habitable zone as a function of spectral type.

Download