On the performance of a cavity method based algorithm for the Prize-Collecting Steiner Tree Problem on graphs


Abstract in English

We study the behavior of an algorithm derived from the cavity method for the Prize-Collecting Steiner Tree (PCST) problem on graphs. The algorithm is based on the zero temperature limit of the cavity equations and as such is formally simple (a fixed point equation resolved by iteration) and distributed (parallelizable). We provide a detailed comparison with state-of-the-art algorithms on a wide range of existing benchmarks networks and random graphs. Specifically, we consider an enhanced derivative of the Goemans-Williamson heuristics and the DHEA solver, a Branch and Cut Linear/Integer Programming based approach. The comparison shows that the cavity algorithm outperforms the two algorithms in most large instances both in running time and quality of the solution. Finally we prove a few optimality properties of the solutions provided by our algorithm, including optimality under the two post-processing procedures defined in the Goemans-Williamson derivative and global optimality in some limit cases.

Download