Do you want to publish a course? Click here

High-pressure cupric oxide: a room-temperature multiferroic

348   0   0.0 ( 0 )
 Added by Xavier Rocquefelte
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Multiferroic materials, in which ferroelectric and magnetic ordering coexist, are of fundamental interest for the development of multi-state memory devices that allow for electrical writing and non-destructive magnetic read-out operation. The great challenge is to create multiferroic materials that operate at room-temperature and have a large ferroelectric polarization P. Cupric oxide, CuO, is promising because of its large P ~ 10^{2} {mu}C.m^{-2}, but is unfortunately only multiferroic in a temperature range of 20 K, from 210 to 230 K. Here, using a combination of density functional theory and Monte Carlo calculations, we establish that pressure-driven phase competition induces a giant stabilization of the multiferroic phase of CuO, which at 20-40 GPa becomes stable in a domain larger than 300 K, from 0 to T > 300 K. Thus, under high-pressure, CuO is predicted to be a room-temperature multiferroic with large polarization.



rate research

Read More

The temperature dependence of the optical and magnetic properties of CuO were examined by means of hybrid density functional theory calculations. Our work shows that the spin exchange interactions in CuO are neither fully one-dimensional nor fully three-dimensional. The large temperature dependence of the optical band gap and the 63Cu nuclear quadrupole resonance frequency of CuO originate from the combined effect of a strong coupling between the spin order and the electronic structure and the progressive appearance of short-range order with temperature.
Multiferroic materials have driven significant research interest due to their promising technological potential. Developing new room-temperature multiferroics and understanding their fundamental properties are important to reveal unanticipated physical phenomena and potential applications. Here, a new room temperature multiferroic nanocomposite comprised of an ordered ferrimagnetic spinel LiFe5O8 (LFO) and a ferroelectric perovskite BiFeO3 (BFO) is presented. We observed that lithium (Li)-doping in BFO favors the formation of LFO spinel as a secondary phase during the synthesis of LixBi1-xFeO3 nanoceramics. Multimodal functional and chemical imaging methods are used to map the relationship between doping-induced phase separation and local ferroic properties in both the BFO-LFO composite ceramics and self-assembled nanocomposite thin films. The energetics of phase separation in Li doped BFO and the formation of BFO-LFO composites is supported by first principles calculations. These findings shed light on Li-ion role in the formation of a functionally important room temperature multiferroic and open a new approach in the synthesis of light element doped nanocomposites.
In multiferroic BiFeO3 thin films grown on highly mismatched LaAlO3 substrates, we reveal the coexistence of two differently distorted polymorphs that leads to striking features in the temperature dependence of the structural and multiferroic properties. Notably, the highly distorted phase quasi-concomitantly presents an abrupt structural change, transforms from a hard to a soft ferroelectric and transitions from antiferromagnetic to paramagnetic at 360+/-20 K. These coupled ferroic transitions just above room temperature hold promises of giant piezoelectric, magnetoelectric and piezomagnetic responses, with potential in many applications fields.
Multiferroics permit the magnetic control of the electric polarization and electric control of the magnetization. These static magnetoelectric (ME) effects are of enormous interest: The ability to read and write a magnetic state current-free by an electric voltage would provide a huge technological advantage. Dynamic or optical ME effects are equally interesting because they give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. This phenomenon, if realized at room temperature, would allow the development of optical diodes which transmit unpolarized light in one, but not in the opposite direction. Here, we report strong unidirectional transmission in the room-temperature multiferroic BiFeO$_3$ over the gigahertz--terahertz frequency range. Supporting theory attributes the observed unidirectional transmission to the spin-current driven dynamic ME effect. These findings are an important step toward the realization of optical diodes, supplemented by the ability to switch the transmission direction with a magnetic or electric field.
BaMnF$_4$ microsheets have been prepared by hydrothermal method. Strong room-temperature blue-violet photoluminescence has been observed (absolute luminescence quantum yield 67%), with two peaks located at 385 nm and 410 nm, respectively. More interestingly, photon self-absorption phenomenon has been observed, leading to unusual abrupt drop of luminescence intensity at wavelength of 400 nm. To understand the underlying mechanism of such emitting, the electronic structure of BaMnF$_4$ has been studied by first principles calculations. The observed two peaks are attributed to electrons transitions between the upper-Hubbard bands of Mns $t_{2g}$ orbitals and the lower-Hubbard bands of Mns $e_g$ orbitals. Those Mott gap mediated d-d orbital transitions may provide additional degrees of freedom to tune the photon generation and absorption in ferroelectrics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا