Do you want to publish a course? Click here

Andromeda Dwarfs in Light of MOND. II. Testing Prior Predictions

179   0   0.0 ( 0 )
 Added by Stacy McGaugh
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We employ recently published measurements of the velocity dispersions in the newly discovered dwarf satellite galaxies of Andromeda to test our previously published predictions of this quantity. The data are in good agreement with our specific predictions for each dwarf made a priori with MOND, with reasonable stellar mass-to-light ratios, and no dark matter, while Newtonian dynamics point to quite large mass discrepancies in these systems. MOND distinguishes between regimes where the internal field of the dwarf, or the external field of the host, dominates. The data appear to recognize this distinction, which is a unique feature of MOND not explicable in LCDM.



rate research

Read More

The Lambda-CDM cosmological model is succesful at reproducing various independent sets of observations concerning the large-scale Universe. This model is however currently, and actually in principle, unable to predict the gravitational field of a galaxy from it observed baryons alone. Indeed the gravitational field should depend on the relative contribution of the particle dark matter distribution to the baryonic one, itself depending on the individual assembly history and environment of the galaxy, including a lot of complex feedback mechanisms. However, for the last thirty years, Milgroms formula, at the heart of the MOND paradigm, has been consistently succesful at predicting rotation curves from baryons alone, and has been resilient to all sorts of observational tests on galaxy scales. We show that the few individual galaxy rotation curves that have been claimed to be highly problematic for the predictions of Milgroms formula, such as Holmberg II or NGC 3109, are actually false alarms. We argue that the fact that it is actually possible to predict the gravitational field of galaxies from baryons alone presents a challenge to the current Lambda-CDM model, and may indicate a breakdown of our understanding of gravitation and dynamics, and/or that the actual lagrangian of the dark sector is very different and richer than currently assumed. On the other hand, it is obvious that any alternative must also, in fine, reproduce the successes of the Lambda-CDM model on large scales, where this model is so well-tested that it presents by itself a challenge to any such alternative.
Context. The elliptical galaxy NGC 3923 is surrounded by numerous stellar shells that are concentric arcs centered on the galactic core. They are very likely a result of a minor merger and they consist of stars in nearly radial orbits. For a given potential, the shell radii at a given time after the merger can be calculated and compared to observations. The Modified Newtonian Dynamics (MOND) is a theory that aims to solve the missing mass problem by modifying the laws of classical dynamics in the limit of small accelerations. Hernquist & Quinn(1987) claimed that the shell distribution of NGC 3923 contradicted MOND, but Milgrom(1988) found several substantial insufficiencies in their work. Aims. We test whether the observed shell distribution in NGC 3923 is consistent with MOND using the current observational knowledge of the shell number and positions and of the host galaxy surface brightness profile, which supersede the data available in the 1980s when the last (and negative) tests of MOND viability were performed on NGC 3923. Methods. Using the 3.6 um bandpass image of NGC 3923 from the Spitzer space telescope we construct the mass profile of the galaxy. The evolution of shell radii in MOND is then computed using analytical formulae. We use 27 currently observed shells and allow for their multi-generation formation, unlike the Hernquist & Quinn one-generation model that used the 18 shells known at the time. Results. Our model reproduces the observed shell radii with a maximum deviation of 5% for 25 out of 27 known shells while keeping a reasonable formation scenario. A multi-generation nature of the shell system, resulting from successive passages of the surviving core of the tidally disrupted dwarf galaxy, is one of key ingredients of our scenario supported by the extreme shell radial range. The 25 reproduced shells are interpreted as belonging to three generations.
118 - Joseph Elliston 2013
Inflation is an early period of accelerated cosmic expansion, thought to be sourced by high energy physics. A key task today is to use the influx of increasingly precise observational data to constrain the plethora of inflationary models suggested by fundamental theories of interactions. This requires a robust theoretical framework for quantifying the predictions of such models; helping to develop such a framework is the aim of this thesis. We provide the first complete quantization of subhorizon perturbations for the well-motivated class of multi-field inflationary models with a non-trivial field metric, which we show may yield interesting signatures in the bispectrum of the Cosmic Microwave Background (CMB). The subsequent evolution of perturbations in the superhorizon epoch is then considered, via a covariant extension of the transport formalism. To develop intuition about the relationship between inflationary dynamics and the evolution of cosmic observables, we investigate analytic approximations of superhorizon perturbation evolution. The validity of these analytic results is contingent on reaching a state of adiabaticity which we discuss and illustrate in depth. We then apply our analytic methods to elucidate the types of inflationary dynamics that lead to an enhanced CMB non-Gaussianity, both in its bispectrum and trispectrum. In addition to deriving a number of new simple relations between the non-Gaussianity parameters, we explain dynamically how and why different shapes of inflationary potential lead to particular observational signatures. Candidate theories of high energy physics such as low energy effective string theory also motivate single-field modifications to the Einstein-Hilbert action. We show how a range of such corrections allow for consistency of single-field chaotic inflationary models that are otherwise in tension with observational data.
We present an accurate analysis of the H2 absorption lines from the zabs ~ 2.4018 damped Ly{alpha} system towards HE 0027-1836 observed with the Very Large Telescope Ultraviolet and Visual Echelle Spectrograph (VLT/UVES) as a part of the European Southern Observatory Large Programme The UVES large programme for testing fundamental physics to constrain the variation of proton-to-electron mass ratio, {mu} = mp/me. We perform cross-correlation analysis between 19 individual exposures taken over three years and the combined spectrum to check the wavelength calibration stability. We notice the presence of a possible wavelength dependent velocity drift especially in the data taken in 2012. We use available asteroids spectra taken with UVES close to our observations to confirm and quantify this effect. We consider single and two component Voigt profiles to model the observed H2 absorption profiles. We use both linear regression analysis and Voigt profile fitting where {Delta}{mu}/{mu} is explicitly considered as an additional fitting parameter. The two component model is marginally favored by the statistical indicators and we get {Delta}{mu}/{mu} = (-2.5 +/- 8.1(stat) +/- 6.2(sys)) ppm. When we apply the correction to the wavelength dependent velocity drift we find {Delta}{mu}/{mu} = (-7.6 +/- 8.1(stat) +/- 6.3(sys)) ppm. It will be important to check the extent to which the velocity drift we notice in this study is present in UVES data used for previous {Delta}{mu}/{mu} measurements.
We consider an interacting field theory model that describes the interaction between dark energy - dark matter interaction. Only for a specific interaction term, this interacting field theory description has an equivalent interacting fluid description. For inverse power law potentials and linear interaction function, we show that the interacting dark sector model is consistent with $textit{four cosmological data sets}$ -- Hubble parameter measurements (Hz), Baryonic Acoustic Oscillation data (BAO), Supernova Type Ia data (SN), and High redshift HII galaxy measurements (HIIG). More specifically, these data sets prefer a negative value of interaction strength in the dark sector and lead to the best-fit value of Hubble constant $H_0 = 69.9^{0.46}_{1.02}$ km s$^{-1}$ Mpc$^{-1}$. Thus, the interacting field theory model $textit{alleviates the Hubble tension}$ between Planck and these four cosmological probes. Having established that this interacting field theory model is consistent with cosmological observations, we obtain quantifying tools to distinguish between the interacting and non-interacting dark sector scenarios. We focus on the variation of the scalar metric perturbed quantities as a function of redshift related to structure formation, weak gravitational lensing, and the integrated Sachs-Wolfe effect. We show that the difference in the evolution becomes significant for $z < 20$, for all length scales, and the difference peaks at smaller redshift values $z < 5$. We then discuss the implications of our results for the upcoming missions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا