Do you want to publish a course? Click here

Discovery of the Y1 Dwarf WISE J064723.23-623235.5

125   0   0.0 ( 0 )
 Added by J. Davy Kirkpatrick
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the discovery of a very cold, very low mass, nearby brown dwarf using data from the NASA Wide-field Infrared Survey Explorer (WISE). The object, WISE J064723.23-623235.5, has a very red WISE color of W1-W2 > 3.77 mag and a very red Spitzer Space Telescope color of ch1-ch2 = 2.82+/-0.09 mag. In J_MKO-ch2 color (7.58+/-0.27 mag) it is one of the two or three reddest brown dwarfs known. Our grism spectrum from the Hubble Space Telescope (HST) confirms it to be the seventeenth Y dwarf discovered, and its spectral type of Y1+/-0.5 makes it one of the four latest-type Y dwarfs classified. Astrometric imaging from Spitzer and HST, combined with data from WISE, provides a preliminary parallax of pi = 115+/-12 mas (d = 8.7+/-0.9 pc) and proper motion of mu = 387+/-25 mas/yr based on 2.5 years of monitoring. The spectrum implies a blue J-H color, for which model atmosphere calculations suggest a relatively low surface gravity. The best fit to these models indicates an effective temperature of 350-400K and a mass of ~5-30 M_Jup. Kinematic analysis hints that this object may belong to the Columba moving group, which would support an age of ~30 Myr and thus an even lower mass of <2 M_Jup, but verification would require a radial velocity measurement not currently possible for a J=22.7 mag brown dwarf.



rate research

Read More

We present a new Y dwarf, WISE J030449.03-270508.3, confirmed from a candidate sample designed to pick out low temperature objects from the WISE database. The new object is typed Y0pec following a visual comparison with spectral standards, and lies at a likely distance of 10-17 pc. Its tangential velocity suggests thin disk membership, but it shows some spectral characteristics that suggest it may be metal-poor and/or older than previously identified Y0 dwarfs. Based on trends seen for warmer late type T dwarfs, the Y-band flux peak morphology is indicative of sub-solar metallicity, and the enhanced red wing of the J-band flux peak offers evidence for high gravity and/or low metallicity (with associated model trends suggesting an age closer to ~10 Gyr and mass in the range 0.02-0.03 Mo). This object may thus be extending the population parameter-space of the known Y0 dwarfs.
141 - Roger L. Griffith 2011
We report two new low metallicity blue compact dwarf galaxies (BCDs), WISEP J080103.93+264053.9 (hereafter W0801+26) and WISEP J170233.53+180306.4 (hereafter W1702+18), discovered using the Wide-field Infrared Survey Explorer (WISE). We identified these two BCDs from their extremely red colors at mid-infrared wavelengths, and obtained follow-up optical spectroscopy using the Low Resolution Imaging Spectrometer on Keck I. The mid-infrared properties of these two sources are similar to the well studied, extremely low metallicity galaxy SBS 0335-052E. We determine metallicities of 12 + log(O/H) = 7.75 and 7.63 for W0801+26 and W1702+18, respectively, placing them amongst a very small group of very metal deficient galaxies (Z < 1/10 Zsun). Their > 300 Angstrom Hbeta equivalent widths, similar to SBS 0335-052E, imply the existence of young (< 5 Myr) star forming regions. We measure star formation rates of 2.6 and 10.9 Msun/yr for W0801+26 and W1702+18, respectively. These BCDs, showing recent star formation activity in extremely low metallicity environments, provide new laboratories for studying star formation in extreme conditions and are low-redshift analogs of the first generation of galaxies to form in the universe. Using the all-sky WISE survey, we discuss a new method to identify similar star forming, low metallicity BCDs.
We present new near-infrared spectra, obtained at Gemini Observatory, for two Y dwarfs: WISE J035000.32-565830.2 (W0350) and WISEP J173835.52+273258.9 (W1738). A FLAMINGOS-2 R=540 spectrum was obtained for W0350, covering 1.0 < lambda um < 1.7, and a cross-dispersed GNIRS R=2800 spectrum was obtained for W1738, covering 0.993-1.087 um, 1.191-1.305 um, 1.589-1.631 um, and 1.985-2.175 um, in four orders. We also present revised YJH photometry for W1738, using new NIRI Y and J imaging, and a re-analysis of the previously published NIRI H band images. We compare these data, together with previously published data for late-T and Y dwarfs, to cloud-free models of solar metallicity, calculated both in chemical equilibrium and with disequilibrium driven by vertical transport. We find that for the Y dwarfs the non-equilibrium models reproduce the near-infrared data better than the equilibrium models. The remaining discrepancies suggest that fine-tuning the CH_4/CO and NH_3/N_2 balance is needed. Improved trigonometric parallaxes would improve the analysis. Despite the uncertainties and discrepancies, the models reproduce the observed near-infrared spectra well. We find that for the Y0, W1738, T_eff = 425 +/- 25 K and log g = 4.0 +/- 0.25, and for the Y1, W0350, T_eff = 350 +/- 25 K and log g = 4.0 +/- 0.25. W1738 may be metal-rich. Based on evolutionary models, these temperatures and gravities correspond to a mass range for both Y dwarfs of 3-9 Jupiter masses, with W0350 being a cooler, slightly older, version of W1738; the age of W0350 is 0.3-3 Gyr, and the age of W1738 is 0.15-1 Gyr.
We present the discovery of the first T dwarf + white dwarf binary system LSPM 1459+0857AB, confirmed through common proper motion and spectroscopy. The white dwarf is a high proper motion object from the LSPM catalogue that we confirm spectroscopically to be a relatively cool (Teff=5535+-45K) and magnetic (B~2MG) hydrogen-rich white dwarf, with an age of at least 4.8Gyrs. The T dwarf is a recent discovery from the UKIRT Infrared Deep Sky Survey (ULAS 1459+0857), and has a spectral type of T4.5+-0.5 and a distance in the range 43-69pc. With an age constraint (inferred from the white dwarf) of >4.8Gyrs we estimate Teff=1200-1500K and logg=5.4-5.5 for ULAS 1459+0857, making it a benchmark T dwarf with well constrained surface gravity. We also compare the T dwarf spectra with the latest LYON group atmospheric model predictions, which despite some shortcomings are in general agreement with the observed properties of ULAS 1459+0857. The separation of the binary components (16,500-26,500AU, or 365 arcseconds on the sky) is consistent with an evolved version of the more common brown dwarf + main-sequence binary systems now known, and although the system has a wide separation, it is shown to be statistically robust as a non spurious association. The observed colours of the T dwarf show that it is relatively bright in the z band compared to other T dwarfs of similar type, and further investigation is warranted to explore the possibility that this could be a more generic indicator of older T dwarfs. Future observations of this binary system will provide even stronger constraints on the T dwarf properties, and additional systems will combine to give a more comprehensively robust test of the model atmospheres in this temperature regime.
136 - Gregory N. Mace 2013
We report the discovery of 87 new T dwarfs uncovered with the Wide-field Infrared Survey Explorer (WISE) and three brown dwarfs with extremely red near-infrared colors that exhibit characteristics of both L and T dwarfs. Two of the new T dwarfs are likely binaries with L7+/-1 primaries and mid-type T secondaries. In addition, our follow-up program has confirmed 10 previously identified T dwarfs and four photometrically-selected L and T dwarf candidates in the literature. This sample, along with the previous WISE discoveries, triples the number of known brown dwarfs with spectral types later than T5. Using the WISE All-Sky Source Catalog we present updated color-color and color-type diagrams for all the WISE-discovered T and Y dwarfs. Near-infrared spectra of the new discoveries are presented, along with spectral classifications. To accommodate later T dwarfs we have modified the integrated flux method of determining spectral indices to instead use the median flux. Furthermore, a newly defined J-narrow index differentiates the early-type Y dwarfs from late-type T dwarfs based on the J-band continuum slope. The K/J indices for this expanded sample show that 32% of late-type T dwarfs have suppressed K-band flux and are blue relative to the spectral standards, while only 11% are redder than the standards. Comparison of the Y/J and K/J index to models suggests diverse atmospheric conditions and supports the possible re-emergence of clouds after the L/T transition. We also discuss peculiar brown dwarfs and candidates that were found not to be substellar, including two Young Stellar Objects and two Active Galactic Nuclei. The coolest WISE-discovered brown dwarfs are the closest of their type and will remain the only sample of their kind for many years to come.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا