Do you want to publish a course? Click here

Unified Models of Molecular Emission from Class 0 Protostellar Outflow Sources

173   0   0.0 ( 0 )
 Added by Matt Redman
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Low mass star-forming regions are more complex than the simple spherically symmetric approximation that is often assumed. We apply a more realistic infall/outflow physical model to molecular/continuum observations of three late Class 0 protostellar sources with the aims of (a) proving the applicability of a single physical model for all three sources, and (b) deriving physical parameters for the molecular gas component in each of the sources. We have observed several molecular species in multiple rotational transitions. The observed line profiles were modelled in the context of a dynamical model which incorporates infall and bipolar outflows, using a three dimensional radiative transfer code. This results in constraints on the physical parameters and chemical abundances in each source. Self-consistent fits to each source are obtained. We constrain the characteristics of the molecular gas in the envelopes as well as in the molecular outflows. We find that the molecular gas abundances in the infalling envelope are reduced, presumably due to freeze-out, whilst the abundances in the molecular outflows are enhanced, presumably due to dynamical activity. Despite the fact that the line profiles show significant source-to-source variation, which primarily derives from variations in the outflow viewing angle, the physical parameters of the gas are found to be similar in each core.



rate research

Read More

We present high angular resolution dust polarization and molecular line observations carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) toward the Class 0 protostar Serpens SMM1. By complementing these observations with new polarization observations from the Submillimeter Array (SMA) and archival data from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the James Clerk Maxwell Telescopes (JCMT), we can compare the magnetic field orientations at different spatial scales. We find major changes in the magnetic field orientation between large (~0.1 pc) scales -- where the magnetic field is oriented E-W, perpendicular to the major axis of the dusty filament where SMM1 is embedded -- and the intermediate and small scales probed by CARMA (~1000 AU resolution), the SMA (~350 AU resolution), and ALMA (~140 AU resolution). The ALMA maps reveal that the redshifted lobe of the bipolar outflow is shaping the magnetic field in SMM1 on the southeast side of the source; however, on the northwestern side and elsewhere in the source, low velocity shocks may be causing the observed chaotic magnetic field pattern. High-spatial-resolution continuum and spectral-line observations also reveal a tight (~130 AU) protobinary system in SMM1-b, the eastern component of which is launching an extremely high-velocity, one-sided jet visible in both CO(2-1) and SiO(5-4); however, that jet does not appear to be shaping the magnetic field. These observations show that with the sensitivity and resolution of ALMA, we can now begin to understand the role that feedback (e.g., from protostellar outflows) plays in shaping the magnetic field in very young, star-forming sources like SMM1.
78 - M. Rengel 2003
Class 0 sources are objects representing the earliest phase of the protostellar evolution. Since they are highly obscured by an extended dusty envelope, these objects emit mainly in the far-infrared to millimetre wavelength range. The analysis of their spectral energy distributions with wide wavelength coverage allows to determine the bolometric temperature and luminosity. However, a more detailed physical interpretation of the internal physical structure of these objects requires radiative transfer modelling. We present modelling results of spectral energy distributions of a sample of nine Class 0 sources in the Perseus and Orion molecular clouds. The SEDs have been simulated using a radiative transfer code based on the Monte Carlo method. We find that a spherically symmetric model for the youngest Class 0 sources allows to reproduce the observed SEDs reasonably well. From our modelling we derive physical parameters of our sources, such as their mass, density distribution, size, etc. We find a density structure of $rho sim r^{-2}$ for the collapsing cores at young ages, evolving to $rho sim r^{-3/2}$ at later times.
HH 211 is a nearby young protostellar system with a highly collimated jet. We have mapped it in 352 GHz continuum, SiO (J=8-7), and HCO+ (J=4-3) emission at up to ~ 0.2 resolution with the Submillimeter Array (SMA). The continuum source is now resolved into two sources, SMM1 and SMM2, with a separation of ~ 84 AU. SMM1 is seen at the center of the jet, probably tracing a (inner) dusty disk around the protostar driving the jet. SMM2 is seen to the southwest of SMM1 and may trace an envelope-disk around a small binary companion. A flattened envelope-disk is seen in HCO+ around SMM1 with a radius of ~ 80 AU perpendicular to the jet axis. Its velocity structure is consistent with a rotation motion and can be fitted with a Keplerian law that yields a mass of ~ 50+-15 Jupiter mass (a mass of a brown dwarf) for the protostar. Thus, the protostar could be the lowest mass source known to have a collimated jet and a rotating flattened envelope-disk. A small-scale (~ 200 AU) low-speed (~ 2 km/s) outflow is seen in HCOP+ around the jet axis extending from the envelope-disk. It seems to rotate in the same direction as the envelope-disk and may carry away part of the angular momentum from the envelope-disk. The jet is seen in SiO close to ~ 100 AU from SMM1. It is seen with a C-shaped bending. It has a transverse width of <~ 40 AU and a velocity of ~ 170+-60 km/s. A possible velocity gradient is seen consistently across its innermost pair of knots, with ~ 0.5 km/s at ~ 10 AU, consistent with the sense of rotation of the envelope-disk. If this gradient is an upper limit of the true rotational gradient of the jet, then the jet carries away a very small amount of angular momentum of ~ 5 AU km/s and thus must be launched from the very inner edge of the disk near the corotation radius.
64 - Miriam Rengel 2004
We report on a study of the thermal dust emission of the circumstellar envelopes of a sample of Class 0 sources. The physical structure (geometry, radial intensity profile, spatial temperature and spectral energy distribution) and properties (mass, size, bolometric luminosity (L_bol) and temperature (T_ bol), and age) of Class 0 sources are derived here in an evolutionary context. This is done by combining SCUBA imaging at 450 and 850 microm of the thermal dust emission of envelopes of Class 0 sources in the Perseus and Orion molecular cloud complexes with a model of the envelope, with the implementation of techniques like the blackbody fitting and radiative transfer calculations of dusty envelopes, and with the Smith evolutionary model for protostars. The modelling results obtained here confirm the validity of a simple spherical symmetric model envelope, and the assumptions about density and dust distributions following the standard envelope model. The spherically model reproduces reasonably well the observed SEDs and the radial profiles of the sources. The implications of the derived properties for protostellar evolution are illustrated by analysis of the L_bol, the T_bol, and the power-law index p of the density distribution for a sample of Class 0 sources.
[abridged] Understanding how the infalling gas redistribute most of its initial angular momentum inherited from prestellar cores before reaching the stellar embryo is a key question. Disk formation has been naturally considered as a possible solution to this angular momentum problem. However, how the initial angular momentum of protostellar cores is distributed and evolves during the main accretion phase and the beginning of disk formation has largely remained unconstrained up to now. In the framework of the IRAM CALYPSO survey, we used high dynamic range C$^{18}$O (2-1) and N$_2$H$^+$ (1-0) observations to quantify the distribution of specific angular momentum along the equatorial axis in a sample of 12 Class 0 protostellar envelopes from scales ~50 to 10000 au. The radial distributions of specific angular momentum in the CALYPSO sample suggest two distinct regimes within protostellar envelopes: the specific angular momentum decreases as $j propto r^{1.6 pm 0.2}$ down to ~1600 au and then tends to become relatively constant around 6 $times$ 10$^{-4}$ km s$^{-1}$ pc down to ~50 au. The values of specific angular momentum measured in the inner Class 0 envelopes, namely that of the material directly involved in the star formation process ($<$1600 au), is on the same order of magnitude as what is inferred in small T-Tauri disks. Thus, disk formation appears to be a direct consequence of angular momentum conservation during the collapse. Our analysis reveals a dispersion of the directions of velocity gradients at envelope scales $>$1600 au, suggesting that they may not be related to rotational motions of the envelopes. We conclude that the specific angular momentum observed at these scales could find its origin in core-forming motions (infall, turbulence) or trace an imprint of the initial conditions for the formation of protostellar cores.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا