Do you want to publish a course? Click here

The Braginskii model of the Rayleigh-Taylor instability. I. Effects of self-generated magnetic fields and thermal conduction in two dimensions

363   0   0.0 ( 0 )
 Added by Tomasz Plewa
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

(abridged) There exists a substantial disagreement between computer simulation results and high-energy density laboratory experiments of the Rayleigh-Taylor instability Kuranz et al. (2010). We adopt the Braginskii formulation for transport in hot, dense plasma, implement and verify the additional physics modules, and conduct a computational study of a single-mode RTI in two dimensions with various combinations of the newly implemented modules. We find that magnetic fields reach levels on the order of 11 MG in the absence of thermal conduction. We observe denting of the RT spike tip and generation of additional higher order modes as a result of these fields. Contrary to interpretation presented in earlier work Nishiguchi (2002), the additional mode is not generated due to modified anisotropic heat transport effects but due to dynamical effect of self-generated magnetic fields. The main effects of thermal conduction are a reduction of the RT instability growth rate (by about 20% for conditions considered here) and inhibited mixing on small scales. In this case, the maximum self-generated magnetic fields are weaker (approximately 1.7 MG). These self-generated magnetic fields are of very similar strength compared to magnetic fields observed recently in HED laboratory experiments Manuel et al. (2012). We find that thermal conduction plays the dominant role in the evolution of the model RTI system considered. It smears out small-scale structure and reduces the RTI growth rate. This may account for the relatively featureless RT spikes seen in experiments, but does not explain mass extensions observed in experiments. Resistivity and related heat source terms were not included in the present work, but we estimate their impact on RTI as modest and not affecting our main conclusions. Resistive effects will be discussed in detail in the next paper in the series.



rate research

Read More

The Kelvin-Helmholtz (KH) instability of a shear layer with an initially-uniform magnetic field in the direction of flow is studied in the framework of 2D incompressible magnetohydrodynamics with finite resistivity and viscosity using direct numerical simulations. The shear layer evolves freely, with no external forcing, and thus broadens in time as turbulent stresses transport momentum across it. As with KH-unstable flows in hydrodynamics, the instability here features a conjugate stable mode for every unstable mode in the absence of dissipation. Stable modes are shown to transport momentum up its gradient, shrinking the layer width whenever they exceed unstable modes in amplitude. In simulations with weak magnetic fields, the linear instability is minimally affected by the magnetic field, but enhanced small-scale fluctuations relative to the hydrodynamic case are observed. These enhanced fluctuations coincide with increased energy dissipation and faster layer broadening, with these features more pronounced in simulations with stronger fields. These trends result from the magnetic field reducing the effects of stable modes relative to the transfer of energy to small scales. As field strength increases, stable modes become less excited and thus transport less momentum against its gradient. Furthermore, the energy that would otherwise transfer back to the driving shear due to stable modes is instead allowed to cascade to small scales, where it is lost to dissipation. Approximations of the turbulent state in terms of a reduced set of modes are explored. While the Reynolds stress is well-described using just two modes per wavenumber at large scales, the Maxwell stress is not.
We investigate the possibility of generating and studying turbulence in plasma by means of high-energy density laser-driven experiments. Our focus is to create supersonic, self-magnetized turbulence with characteristics that resemble those found in the interstellar medium (ISM). We consider a target made of a spherical core surrounded by a shell made of denser material. The shell is irradiated by a sequence of laser pulses sending inward-propagating shocks that convert the inner core into plasma and create turbulence. In the context of the evolution of the ISM, the shocks play the role of supernova remnant shocks and the core represents the ionized interstellar medium. We consider the effects of both pre-existing and self-generating magnetic fields and study the evolution of the system by means of two-dimensional numerical simulations. We find that the evolution of the turbulent core is generally, subsonic with rms-Mach number $M_tapprox 0.2$. We observe an isotropic, turbulent velocity field with an inertial range power spectra of $P(k)propto k^{-2.3}$. We account for the effects of self-magnetization and find that the resulting magnetic field has characteristic strength $approx 3times 10^{4}$ G. The corresponding plasma beta is $approx 1times 10^{4}$--$1times 10^{5}$, indicating that the magnetic field does not play an important role in the dynamical evolution of the system. The natural extension of this work is to study the system evolution in three-dimensions, with various laser drive configurations, and targets with shells and cores of different masses. The latter modification may help to increase the turbulent intensity and possibly create transonic turbulence. One of the key challenges is to obtain transonic turbulent conditions in a quasi-steady state environment.
98 - Shu-Chao Duan 2017
We give theoretical analyses of the Magneto-Rayleigh-Taylor instability driven by a rotating magnetic field. Both slab and liner configurations with finite thicknesses are dealt with in the WKB and the non-WKB approximations. Results show that instabilities for all modes (combinations of wave vectors) are alleviated. We further discuss the potential application of the alternant/nested configurations of a theta and a Z pinch to the Theta-Z Liner Inertia Fusion (Theta-Z-LIF) concept.
127 - A. R. Yeates , G. Hornig 2012
We introduce a topological flux function to quantify the topology of magnetic braids: non-zero, line-tied magnetic fields whose field lines all connect between two boundaries. This scalar function is an ideal invariant defined on a cross-section of the magnetic field, and measures the average poloidal magnetic flux around any given field line, or the average pairwise crossing number between a given field line and all others. Moreover, its integral over the cross-section yields the relative magnetic helicity. Using the fact that the flux function is also an action in the Hamiltonian formulation of the field line equations, we prove that it uniquely characterizes the field line mapping and hence the magnetic topology.
This work examines the effect of the embedded magnetic field strength on the non-linear development of the magnetic Rayleigh-Taylor Instability (RTI) (with a field-aligned interface) in an ideal gas close to the incompressible limit in three dimensions. Numerical experiments are conducted in a domain sufficiently large so as to allow the predicted critical modes to develop in a physically realistic manner. The ratio between gravity, which drives the instability in this case (as well as in several of the corresponding observations), and magnetic field strength is taken up to a ratio which accurately reflects that of observed astrophysical plasma, in order to allow comparison between the results of the simulations and the observational data which served as inspiration for this work. This study finds reduced non-linear growth of the rising bubbles of the RTI for stronger magnetic fields, and that this is directly due to the change in magnetic field strength, rather than the indirect effect of altering characteristic length scales with respect to domain size. By examining the growth of the falling spikes, the growth rate appears to be enhanced for the strongest magnetic field strengths, suggesting that rather than affecting the development of the system as a whole, increased magnetic field strengths in fact introduce an asymmetry to the system. Further investigation of this effect also revealed that the greater this asymmetry, the less efficiently the gravitational energy is released. By better understanding the under-studied regime of such a major phenomenon in astrophysics, deeper explanations for observations may be sought, and this work illustrates that the strength of magnetic fields in astrophysical plasmas influences observed RTI in subtle and complex ways.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا